dormrz.F90 Source File


Source Code

#include "ESMF_LapackBlas.inc"
!> \brief \b DORMRZ
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!> \htmlonly
!> Download DORMRZ + dependencies
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dormrz.f">
!> [TGZ]</a>
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dormrz.f">
!> [ZIP]</a>
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dormrz.f">
!> [TXT]</a>
!> \endhtmlonly
!
!  Definition:
!  ===========
!
!       SUBROUTINE DORMRZ( SIDE, TRANS, M, N, K, L, A, LDA, TAU, C, LDC,
!                          WORK, LWORK, INFO )
!
!       .. Scalar Arguments ..
!       CHARACTER          SIDE, TRANS
!       INTEGER            INFO, K, L, LDA, LDC, LWORK, M, N
!       ..
!       .. Array Arguments ..
!       DOUBLE PRECISION   A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> DORMRZ overwrites the general real M-by-N matrix C with
!>
!>                 SIDE = 'L'     SIDE = 'R'
!> TRANS = 'N':      Q * C          C * Q
!> TRANS = 'T':      Q**T * C       C * Q**T
!>
!> where Q is a real orthogonal matrix defined as the product of k
!> elementary reflectors
!>
!>       Q = H(1) H(2) . . . H(k)
!>
!> as returned by DTZRZF. Q is of order M if SIDE = 'L' and of order N
!> if SIDE = 'R'.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] SIDE
!> \verbatim
!>          SIDE is CHARACTER*1
!>          = 'L': apply Q or Q**T from the Left;
!>          = 'R': apply Q or Q**T from the Right.
!> \endverbatim
!>
!> \param[in] TRANS
!> \verbatim
!>          TRANS is CHARACTER*1
!>          = 'N':  No transpose, apply Q;
!>          = 'T':  Transpose, apply Q**T.
!> \endverbatim
!>
!> \param[in] M
!> \verbatim
!>          M is INTEGER
!>          The number of rows of the matrix C. M >= 0.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>          The number of columns of the matrix C. N >= 0.
!> \endverbatim
!>
!> \param[in] K
!> \verbatim
!>          K is INTEGER
!>          The number of elementary reflectors whose product defines
!>          the matrix Q.
!>          If SIDE = 'L', M >= K >= 0;
!>          if SIDE = 'R', N >= K >= 0.
!> \endverbatim
!>
!> \param[in] L
!> \verbatim
!>          L is INTEGER
!>          The number of columns of the matrix A containing
!>          the meaningful part of the Householder reflectors.
!>          If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0.
!> \endverbatim
!>
!> \param[in] A
!> \verbatim
!>          A is DOUBLE PRECISION array, dimension
!>                               (LDA,M) if SIDE = 'L',
!>                               (LDA,N) if SIDE = 'R'
!>          The i-th row must contain the vector which defines the
!>          elementary reflector H(i), for i = 1,2,...,k, as returned by
!>          DTZRZF in the last k rows of its array argument A.
!>          A is modified by the routine but restored on exit.
!> \endverbatim
!>
!> \param[in] LDA
!> \verbatim
!>          LDA is INTEGER
!>          The leading dimension of the array A. LDA >= max(1,K).
!> \endverbatim
!>
!> \param[in] TAU
!> \verbatim
!>          TAU is DOUBLE PRECISION array, dimension (K)
!>          TAU(i) must contain the scalar factor of the elementary
!>          reflector H(i), as returned by DTZRZF.
!> \endverbatim
!>
!> \param[in,out] C
!> \verbatim
!>          C is DOUBLE PRECISION array, dimension (LDC,N)
!>          On entry, the M-by-N matrix C.
!>          On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.
!> \endverbatim
!>
!> \param[in] LDC
!> \verbatim
!>          LDC is INTEGER
!>          The leading dimension of the array C. LDC >= max(1,M).
!> \endverbatim
!>
!> \param[out] WORK
!> \verbatim
!>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
!>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
!> \endverbatim
!>
!> \param[in] LWORK
!> \verbatim
!>          LWORK is INTEGER
!>          The dimension of the array WORK.
!>          If SIDE = 'L', LWORK >= max(1,N);
!>          if SIDE = 'R', LWORK >= max(1,M).
!>          For optimum performance LWORK >= N*NB if SIDE = 'L', and
!>          LWORK >= M*NB if SIDE = 'R', where NB is the optimal
!>          blocksize.
!>
!>          If LWORK = -1, then a workspace query is assumed; the routine
!>          only calculates the optimal size of the WORK array, returns
!>          this value as the first entry of the WORK array, and no error
!>          message related to LWORK is issued by XERBLA.
!> \endverbatim
!>
!> \param[out] INFO
!> \verbatim
!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date November 2011
!
!> \ingroup doubleOTHERcomputational
!
!> \par Contributors:
!  ==================
!>
!>    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!> \endverbatim
!>
!  =====================================================================
      SUBROUTINE DORMRZ( SIDE, TRANS, M, N, K, L, A, LDA, TAU, C, LDC, &
     &                   WORK, LWORK, INFO )
!
!  -- LAPACK computational routine (version 3.4.0) --
!  -- LAPACK is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     November 2011
!
!     .. Scalar Arguments ..
      CHARACTER          SIDE, TRANS
      INTEGER            INFO, K, L, LDA, LDC, LWORK, M, N
!     ..
!     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
      INTEGER            NBMAX, LDT
      PARAMETER          ( NBMAX = 64, LDT = NBMAX+1 )
!     ..
!     .. Local Scalars ..
      LOGICAL            LEFT, LQUERY, NOTRAN
      CHARACTER          TRANST
      INTEGER            I, I1, I2, I3, IB, IC, IINFO, IWS, JA, JC, &
     &                   LDWORK, LWKOPT, MI, NB, NBMIN, NI, NQ, NW
!     ..
!     .. Local Arrays ..
      DOUBLE PRECISION   T( LDT, NBMAX )
!     ..
!     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            ILAENV
      EXTERNAL           LSAME, ILAENV
!     ..
!     .. External Subroutines ..
      EXTERNAL           DLARZB, DLARZT, DORMR3, XERBLA
!     ..
!     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN
!     ..
!     .. Executable Statements ..
!
!     Test the input arguments
!
      INFO = 0
      LEFT = LSAME( SIDE, 'L' )
      NOTRAN = LSAME( TRANS, 'N' )
      LQUERY = ( LWORK.EQ.-1 )
!
!     NQ is the order of Q and NW is the minimum dimension of WORK
!
      IF( LEFT ) THEN
         NQ = M
         NW = MAX( 1, N )
      ELSE
         NQ = N
         NW = MAX( 1, M )
      END IF
      IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
         INFO = -1
      ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) ) THEN
         INFO = -2
      ELSE IF( M.LT.0 ) THEN
         INFO = -3
      ELSE IF( N.LT.0 ) THEN
         INFO = -4
      ELSE IF( K.LT.0 .OR. K.GT.NQ ) THEN
         INFO = -5
      ELSE IF( L.LT.0 .OR. ( LEFT .AND. ( L.GT.M ) ) .OR. &
     &         ( .NOT.LEFT .AND. ( L.GT.N ) ) ) THEN
         INFO = -6
      ELSE IF( LDA.LT.MAX( 1, K ) ) THEN
         INFO = -8
      ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
         INFO = -11
      END IF
!
      IF( INFO.EQ.0 ) THEN
         IF( M.EQ.0 .OR. N.EQ.0 ) THEN
            LWKOPT = 1
         ELSE
!
!           Determine the block size.  NB may be at most NBMAX, where
!           NBMAX is used to define the local array T.
!
            NB = MIN( NBMAX, ILAENV( 1, 'DORMRQ', SIDE // TRANS, M, N, &
     &                               K, -1 ) )
            LWKOPT = NW*NB
         END IF
         WORK( 1 ) = LWKOPT
!
         IF( LWORK.LT.MAX( 1, NW ) .AND. .NOT.LQUERY ) THEN
            INFO = -13
         END IF
      END IF
!
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DORMRZ', -INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         RETURN
      END IF
!
!     Quick return if possible
!
      IF( M.EQ.0 .OR. N.EQ.0 ) THEN
         WORK( 1 ) = 1
         RETURN
      END IF
!
      NBMIN = 2
      LDWORK = NW
      IF( NB.GT.1 .AND. NB.LT.K ) THEN
         IWS = NW*NB
         IF( LWORK.LT.IWS ) THEN
            NB = LWORK / LDWORK
            NBMIN = MAX( 2, ILAENV( 2, 'DORMRQ', SIDE // TRANS, M, N, K, &
     &              -1 ) )
         END IF
      ELSE
         IWS = NW
      END IF
!
      IF( NB.LT.NBMIN .OR. NB.GE.K ) THEN
!
!        Use unblocked code
!
         CALL DORMR3( SIDE, TRANS, M, N, K, L, A, LDA, TAU, C, LDC, &
     &                WORK, IINFO )
      ELSE
!
!        Use blocked code
!
         IF( ( LEFT .AND. .NOT.NOTRAN ) .OR. &
     &       ( .NOT.LEFT .AND. NOTRAN ) ) THEN
            I1 = 1
            I2 = K
            I3 = NB
         ELSE
            I1 = ( ( K-1 ) / NB )*NB + 1
            I2 = 1
            I3 = -NB
         END IF
!
         IF( LEFT ) THEN
            NI = N
            JC = 1
            JA = M - L + 1
         ELSE
            MI = M
            IC = 1
            JA = N - L + 1
         END IF
!
         IF( NOTRAN ) THEN
            TRANST = 'T'
         ELSE
            TRANST = 'N'
         END IF
!
         DO 10 I = I1, I2, I3
            IB = MIN( NB, K-I+1 )
!
!           Form the triangular factor of the block reflector
!           H = H(i+ib-1) . . . H(i+1) H(i)
!
            CALL DLARZT( 'Backward', 'Rowwise', L, IB, A( I, JA ), LDA, &
     &                   TAU( I ), T, LDT )
!
            IF( LEFT ) THEN
!
!              H or H**T is applied to C(i:m,1:n)
!
               MI = M - I + 1
               IC = I
            ELSE
!
!              H or H**T is applied to C(1:m,i:n)
!
               NI = N - I + 1
               JC = I
            END IF
!
!           Apply H or H**T
!
            CALL DLARZB( SIDE, TRANST, 'Backward', 'Rowwise', MI, NI, &
     &                   IB, L, A( I, JA ), LDA, T, LDT, C( IC, JC ), &
     &                   LDC, WORK, LDWORK )
   10    CONTINUE
!
      END IF
!
      WORK( 1 ) = LWKOPT
!
      RETURN
!
!     End of DORMRZ
!
      END