\brief \b ESMF_DORMRZ \htmlonly Download ESMF_DORMRZ + dependencies [TGZ] [ZIP] [TXT] \endhtmlonly \par Purpose:
\verbatim
ESMF_DORMRZ overwrites the general real M-by-N matrix C with
SIDE = 'L' SIDE = 'R'
TRANS = ‘N’: Q * C C * Q TRANS = ‘T’: QT * C C * QT
where Q is a real orthogonal matrix defined as the product of k elementary reflectors
Q = H(1) H(2) . . . H(k)
as returned by ESMF_DTZRZF. Q is of order M if SIDE = ‘L’ and of order N if SIDE = ‘R’. \endverbatim \param[in] SIDE \verbatim SIDE is CHARACTER1 = ‘L’: apply Q or QT from the Left; = ‘R’: apply Q or Q*T from the Right. \endverbatim
\param[in] TRANS \verbatim TRANS is CHARACTER1 = ‘N’: No transpose, apply Q; = ‘T’: Transpose, apply Q*T. \endverbatim
\param[in] M \verbatim M is INTEGER The number of rows of the matrix C. M >= 0. \endverbatim
\param[in] N \verbatim N is INTEGER The number of columns of the matrix C. N >= 0. \endverbatim
\param[in] K \verbatim K is INTEGER The number of elementary reflectors whose product defines the matrix Q. If SIDE = ‘L’, M >= K >= 0; if SIDE = ‘R’, N >= K >= 0. \endverbatim
\param[in] L \verbatim L is INTEGER The number of columns of the matrix A containing the meaningful part of the Householder reflectors. If SIDE = ‘L’, M >= L >= 0, if SIDE = ‘R’, N >= L >= 0. \endverbatim
\param[in] A \verbatim A is DOUBLE PRECISION array, dimension (LDA,M) if SIDE = ‘L’, (LDA,N) if SIDE = ‘R’ The i-th row must contain the vector which defines the elementary reflector H(i), for i = 1,2,…,k, as returned by ESMF_DTZRZF in the last k rows of its array argument A. A is modified by the routine but restored on exit. \endverbatim
\param[in] LDA \verbatim LDA is INTEGER The leading dimension of the array A. LDA >= max(1,K). \endverbatim
\param[in] TAU \verbatim TAU is DOUBLE PRECISION array, dimension (K) TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by ESMF_DTZRZF. \endverbatim
\param[in,out] C \verbatim C is DOUBLE PRECISION array, dimension (LDC,N) On entry, the M-by-N matrix C. On exit, C is overwritten by QC or QHC or CQH or CQ. \endverbatim
\param[in] LDC \verbatim LDC is INTEGER The leading dimension of the array C. LDC >= max(1,M). \endverbatim
\param[out] WORK \verbatim WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK. \endverbatim
\param[in] LWORK \verbatim LWORK is INTEGER The dimension of the array WORK. If SIDE = ‘L’, LWORK >= max(1,N); if SIDE = ‘R’, LWORK >= max(1,M). For optimum performance LWORK >= NNB if SIDE = ‘L’, and LWORK >= MNB if SIDE = ‘R’, where NB is the optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by ESMF_XERBLA.
\endverbatim
\param[out] INFO \verbatim INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value \endverbatim \author Univ. of Tennessee \author Univ. of California Berkeley \author Univ. of Colorado Denver \author NAG Ltd. \date November 2011 \ingroup doubleOTHERcomputational \par Contributors:
A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA \par Further Details:
\verbatim \endverbatim
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
character(len=1) | :: | SIDE | ||||
character(len=1) | :: | TRANS | ||||
integer | :: | M | ||||
integer | :: | N | ||||
integer | :: | K | ||||
integer | :: | L | ||||
double precision | :: | A(LDA,*) | ||||
integer | :: | LDA | ||||
double precision | :: | TAU(*) | ||||
double precision | :: | C(LDC,*) | ||||
integer | :: | LDC | ||||
double precision | :: | WORK(*) | ||||
integer | :: | LWORK | ||||
integer | :: | INFO |