dorg2r.F90 Source File


Source Code

#include "ESMF_LapackBlas.inc"
!> \brief \b DORG2R generates all or part of the orthogonal matrix Q from a QR factorization determined by sgeqrf (unblocked algorithm).
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!> \htmlonly
!> Download DORG2R + dependencies
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dorg2r.f">
!> [TGZ]</a>
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dorg2r.f">
!> [ZIP]</a>
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dorg2r.f">
!> [TXT]</a>
!> \endhtmlonly
!
!  Definition:
!  ===========
!
!       SUBROUTINE DORG2R( M, N, K, A, LDA, TAU, WORK, INFO )
!
!       .. Scalar Arguments ..
!       INTEGER            INFO, K, LDA, M, N
!       ..
!       .. Array Arguments ..
!       DOUBLE PRECISION   A( LDA, * ), TAU( * ), WORK( * )
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> DORG2R generates an m by n real matrix Q with orthonormal columns,
!> which is defined as the first n columns of a product of k elementary
!> reflectors of order m
!>
!>       Q  =  H(1) H(2) . . . H(k)
!>
!> as returned by DGEQRF.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] M
!> \verbatim
!>          M is INTEGER
!>          The number of rows of the matrix Q. M >= 0.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>          The number of columns of the matrix Q. M >= N >= 0.
!> \endverbatim
!>
!> \param[in] K
!> \verbatim
!>          K is INTEGER
!>          The number of elementary reflectors whose product defines the
!>          matrix Q. N >= K >= 0.
!> \endverbatim
!>
!> \param[in,out] A
!> \verbatim
!>          A is DOUBLE PRECISION array, dimension (LDA,N)
!>          On entry, the i-th column must contain the vector which
!>          defines the elementary reflector H(i), for i = 1,2,...,k, as
!>          returned by DGEQRF in the first k columns of its array
!>          argument A.
!>          On exit, the m-by-n matrix Q.
!> \endverbatim
!>
!> \param[in] LDA
!> \verbatim
!>          LDA is INTEGER
!>          The first dimension of the array A. LDA >= max(1,M).
!> \endverbatim
!>
!> \param[in] TAU
!> \verbatim
!>          TAU is DOUBLE PRECISION array, dimension (K)
!>          TAU(i) must contain the scalar factor of the elementary
!>          reflector H(i), as returned by DGEQRF.
!> \endverbatim
!>
!> \param[out] WORK
!> \verbatim
!>          WORK is DOUBLE PRECISION array, dimension (N)
!> \endverbatim
!>
!> \param[out] INFO
!> \verbatim
!>          INFO is INTEGER
!>          = 0: successful exit
!>          < 0: if INFO = -i, the i-th argument has an illegal value
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup doubleOTHERcomputational
!
!  =====================================================================
      SUBROUTINE DORG2R( M, N, K, A, LDA, TAU, WORK, INFO )
!
!  -- LAPACK computational routine (version 3.7.0) --
!  -- LAPACK is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
      INTEGER            INFO, K, LDA, M, N
!     ..
!     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * ), TAU( * ), WORK( * )
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
      DOUBLE PRECISION   ONE, ZERO
      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
!     ..
!     .. Local Scalars ..
      INTEGER            I, J, L
!     ..
!     .. External Subroutines ..
      EXTERNAL           DLARF, DSCAL, XERBLA
!     ..
!     .. Intrinsic Functions ..
      INTRINSIC          MAX
!     ..
!     .. Executable Statements ..
!
!     Test the input arguments
!
      INFO = 0
      IF( M.LT.0 ) THEN
         INFO = -1
      ELSE IF( N.LT.0 .OR. N.GT.M ) THEN
         INFO = -2
      ELSE IF( K.LT.0 .OR. K.GT.N ) THEN
         INFO = -3
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
         INFO = -5
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DORG2R', -INFO )
         RETURN
      END IF
!
!     Quick return if possible
!
      IF( N.LE.0 ) &
         RETURN
!
!     Initialise columns k+1:n to columns of the unit matrix
!
      DO 20 J = K + 1, N
         DO 10 L = 1, M
            A( L, J ) = ZERO
   10    CONTINUE
         A( J, J ) = ONE
   20 CONTINUE
!
      DO 40 I = K, 1, -1
!
!        Apply H(i) to A(i:m,i:n) from the left
!
         IF( I.LT.N ) THEN
            A( I, I ) = ONE
            CALL DLARF( 'Left', M-I+1, N-I, A( I, I ), 1, TAU( I ), &
                        A( I, I+1 ), LDA, WORK )
         END IF
         IF( I.LT.M ) &
            CALL DSCAL( M-I, -TAU( I ), A( I+1, I ), 1 )
         A( I, I ) = ONE - TAU( I )
!
!        Set A(1:i-1,i) to zero
!
         DO 30 L = 1, I - 1
            A( L, I ) = ZERO
   30    CONTINUE
   40 CONTINUE
      RETURN
!
!     End of DORG2R
!
      END