ESMF_DORG2R Subroutine

subroutine ESMF_DORG2R(M, N, K, A, LDA, TAU, WORK, INFO)

\brief \b ESMF_DORG2R generates all or part of the orthogonal matrix Q from a QR factorization determined by sgeqrf (unblocked algorithm). \htmlonly Download ESMF_DORG2R + dependencies [TGZ] [ZIP] [TXT] \endhtmlonly \par Purpose:

\verbatim

ESMF_DORG2R generates an m by n real matrix Q with orthonormal columns, which is defined as the first n columns of a product of k elementary reflectors of order m

  Q  =  H(1) H(2) . . . H(k)

as returned by ESMF_DGEQRF. \endverbatim \param[in] M \verbatim M is INTEGER The number of rows of the matrix Q. M >= 0. \endverbatim

\param[in] N \verbatim N is INTEGER The number of columns of the matrix Q. M >= N >= 0. \endverbatim

\param[in] K \verbatim K is INTEGER The number of elementary reflectors whose product defines the matrix Q. N >= K >= 0. \endverbatim

\param[in,out] A \verbatim A is DOUBLE PRECISION array, dimension (LDA,N) On entry, the i-th column must contain the vector which defines the elementary reflector H(i), for i = 1,2,…,k, as returned by ESMF_DGEQRF in the first k columns of its array argument A. On exit, the m-by-n matrix Q. \endverbatim

\param[in] LDA \verbatim LDA is INTEGER The first dimension of the array A. LDA >= max(1,M). \endverbatim

\param[in] TAU \verbatim TAU is DOUBLE PRECISION array, dimension (K) TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by ESMF_DGEQRF. \endverbatim

\param[out] WORK \verbatim WORK is DOUBLE PRECISION array, dimension (N) \endverbatim

\param[out] INFO \verbatim INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument has an illegal value \endverbatim \author Univ. of Tennessee \author Univ. of California Berkeley \author Univ. of Colorado Denver \author NAG Ltd. \date December 2016 \ingroup doubleOTHERcomputational

Arguments

Type IntentOptional Attributes Name
integer :: M
integer :: N
integer :: K
double precision :: A(LDA,*)
integer :: LDA
double precision :: TAU(*)
double precision :: WORK(*)
integer :: INFO