dlarzb.F90 Source File


Source Code

#include "ESMF_LapackBlas.inc"
!> \brief \b DLARZB
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!> \htmlonly
!> Download DLARZB + dependencies
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlarzb.f">
!> [TGZ]</a>
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlarzb.f">
!> [ZIP]</a>
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlarzb.f">
!> [TXT]</a>
!> \endhtmlonly
!
!  Definition:
!  ===========
!
!       SUBROUTINE DLARZB( SIDE, TRANS, DIRECT, STOREV, M, N, K, L, V,
!                          LDV, T, LDT, C, LDC, WORK, LDWORK )
!
!       .. Scalar Arguments ..
!       CHARACTER          DIRECT, SIDE, STOREV, TRANS
!       INTEGER            K, L, LDC, LDT, LDV, LDWORK, M, N
!       ..
!       .. Array Arguments ..
!       DOUBLE PRECISION   C( LDC, * ), T( LDT, * ), V( LDV, * ),
!      $                   WORK( LDWORK, * )
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> DLARZB applies a real block reflector H or its transpose H**T to
!> a real distributed M-by-N  C from the left or the right.
!>
!> Currently, only STOREV = 'R' and DIRECT = 'B' are supported.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] SIDE
!> \verbatim
!>          SIDE is CHARACTER*1
!>          = 'L': apply H or H**T from the Left
!>          = 'R': apply H or H**T from the Right
!> \endverbatim
!>
!> \param[in] TRANS
!> \verbatim
!>          TRANS is CHARACTER*1
!>          = 'N': apply H (No transpose)
!>          = 'C': apply H**T (Transpose)
!> \endverbatim
!>
!> \param[in] DIRECT
!> \verbatim
!>          DIRECT is CHARACTER*1
!>          Indicates how H is formed from a product of elementary
!>          reflectors
!>          = 'F': H = H(1) H(2) . . . H(k) (Forward, not supported yet)
!>          = 'B': H = H(k) . . . H(2) H(1) (Backward)
!> \endverbatim
!>
!> \param[in] STOREV
!> \verbatim
!>          STOREV is CHARACTER*1
!>          Indicates how the vectors which define the elementary
!>          reflectors are stored:
!>          = 'C': Columnwise                        (not supported yet)
!>          = 'R': Rowwise
!> \endverbatim
!>
!> \param[in] M
!> \verbatim
!>          M is INTEGER
!>          The number of rows of the matrix C.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>          The number of columns of the matrix C.
!> \endverbatim
!>
!> \param[in] K
!> \verbatim
!>          K is INTEGER
!>          The order of the matrix T (= the number of elementary
!>          reflectors whose product defines the block reflector).
!> \endverbatim
!>
!> \param[in] L
!> \verbatim
!>          L is INTEGER
!>          The number of columns of the matrix V containing the
!>          meaningful part of the Householder reflectors.
!>          If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0.
!> \endverbatim
!>
!> \param[in] V
!> \verbatim
!>          V is DOUBLE PRECISION array, dimension (LDV,NV).
!>          If STOREV = 'C', NV = K; if STOREV = 'R', NV = L.
!> \endverbatim
!>
!> \param[in] LDV
!> \verbatim
!>          LDV is INTEGER
!>          The leading dimension of the array V.
!>          If STOREV = 'C', LDV >= L; if STOREV = 'R', LDV >= K.
!> \endverbatim
!>
!> \param[in] T
!> \verbatim
!>          T is DOUBLE PRECISION array, dimension (LDT,K)
!>          The triangular K-by-K matrix T in the representation of the
!>          block reflector.
!> \endverbatim
!>
!> \param[in] LDT
!> \verbatim
!>          LDT is INTEGER
!>          The leading dimension of the array T. LDT >= K.
!> \endverbatim
!>
!> \param[in,out] C
!> \verbatim
!>          C is DOUBLE PRECISION array, dimension (LDC,N)
!>          On entry, the M-by-N matrix C.
!>          On exit, C is overwritten by H*C or H**T*C or C*H or C*H**T.
!> \endverbatim
!>
!> \param[in] LDC
!> \verbatim
!>          LDC is INTEGER
!>          The leading dimension of the array C. LDC >= max(1,M).
!> \endverbatim
!>
!> \param[out] WORK
!> \verbatim
!>          WORK is DOUBLE PRECISION array, dimension (LDWORK,K)
!> \endverbatim
!>
!> \param[in] LDWORK
!> \verbatim
!>          LDWORK is INTEGER
!>          The leading dimension of the array WORK.
!>          If SIDE = 'L', LDWORK >= max(1,N);
!>          if SIDE = 'R', LDWORK >= max(1,M).
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date November 2011
!
!> \ingroup doubleOTHERcomputational
!
!> \par Contributors:
!  ==================
!>
!>    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!> \endverbatim
!>
!  =====================================================================
      SUBROUTINE DLARZB( SIDE, TRANS, DIRECT, STOREV, M, N, K, L, V, &
     &                   LDV, T, LDT, C, LDC, WORK, LDWORK )
!
!  -- LAPACK computational routine (version 3.4.0) --
!  -- LAPACK is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     November 2011
!
!     .. Scalar Arguments ..
      CHARACTER          DIRECT, SIDE, STOREV, TRANS
      INTEGER            K, L, LDC, LDT, LDV, LDWORK, M, N
!     ..
!     .. Array Arguments ..
      DOUBLE PRECISION   C( LDC, * ), T( LDT, * ), V( LDV, * ), &
     &                   WORK( LDWORK, * )
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
      DOUBLE PRECISION   ONE
      PARAMETER          ( ONE = 1.0D+0 )
!     ..
!     .. Local Scalars ..
      CHARACTER          TRANST
      INTEGER            I, INFO, J
!     ..
!     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
!     ..
!     .. External Subroutines ..
      EXTERNAL           DCOPY, DGEMM, DTRMM, XERBLA
!     ..
!     .. Executable Statements ..
!
!     Quick return if possible
!
      IF( M.LE.0 .OR. N.LE.0 ) &
     &   RETURN
!
!     Check for currently supported options
!
      INFO = 0
      IF( .NOT.LSAME( DIRECT, 'B' ) ) THEN
         INFO = -3
      ELSE IF( .NOT.LSAME( STOREV, 'R' ) ) THEN
         INFO = -4
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DLARZB', -INFO )
         RETURN
      END IF
!
      IF( LSAME( TRANS, 'N' ) ) THEN
         TRANST = 'T'
      ELSE
         TRANST = 'N'
      END IF
!
      IF( LSAME( SIDE, 'L' ) ) THEN
!
!        Form  H * C  or  H**T * C
!
!        W( 1:n, 1:k ) = C( 1:k, 1:n )**T
!
         DO 10 J = 1, K
            CALL DCOPY( N, C( J, 1 ), LDC, WORK( 1, J ), 1 )
   10    CONTINUE
!
!        W( 1:n, 1:k ) = W( 1:n, 1:k ) + ...
!                        C( m-l+1:m, 1:n )**T * V( 1:k, 1:l )**T
!
         IF( L.GT.0 ) &
     &      CALL DGEMM( 'Transpose', 'Transpose', N, K, L, ONE, &
     &                  C( M-L+1, 1 ), LDC, V, LDV, ONE, WORK, LDWORK )
!
!        W( 1:n, 1:k ) = W( 1:n, 1:k ) * T**T  or  W( 1:m, 1:k ) * T
!
         CALL DTRMM( 'Right', 'Lower', TRANST, 'Non-unit', N, K, ONE, T, &
     &               LDT, WORK, LDWORK )
!
!        C( 1:k, 1:n ) = C( 1:k, 1:n ) - W( 1:n, 1:k )**T
!
         DO 30 J = 1, N
            DO 20 I = 1, K
               C( I, J ) = C( I, J ) - WORK( J, I )
   20       CONTINUE
   30    CONTINUE
!
!        C( m-l+1:m, 1:n ) = C( m-l+1:m, 1:n ) - ...
!                            V( 1:k, 1:l )**T * W( 1:n, 1:k )**T
!
         IF( L.GT.0 ) &
     &      CALL DGEMM( 'Transpose', 'Transpose', L, N, K, -ONE, V, LDV, &
     &                  WORK, LDWORK, ONE, C( M-L+1, 1 ), LDC )
!
      ELSE IF( LSAME( SIDE, 'R' ) ) THEN
!
!        Form  C * H  or  C * H**T
!
!        W( 1:m, 1:k ) = C( 1:m, 1:k )
!
         DO 40 J = 1, K
            CALL DCOPY( M, C( 1, J ), 1, WORK( 1, J ), 1 )
   40    CONTINUE
!
!        W( 1:m, 1:k ) = W( 1:m, 1:k ) + ...
!                        C( 1:m, n-l+1:n ) * V( 1:k, 1:l )**T
!
         IF( L.GT.0 ) &
     &      CALL DGEMM( 'No transpose', 'Transpose', M, K, L, ONE, &
     &                  C( 1, N-L+1 ), LDC, V, LDV, ONE, WORK, LDWORK )
!
!        W( 1:m, 1:k ) = W( 1:m, 1:k ) * T  or  W( 1:m, 1:k ) * T**T
!
         CALL DTRMM( 'Right', 'Lower', TRANS, 'Non-unit', M, K, ONE, T, &
     &               LDT, WORK, LDWORK )
!
!        C( 1:m, 1:k ) = C( 1:m, 1:k ) - W( 1:m, 1:k )
!
         DO 60 J = 1, K
            DO 50 I = 1, M
               C( I, J ) = C( I, J ) - WORK( I, J )
   50       CONTINUE
   60    CONTINUE
!
!        C( 1:m, n-l+1:n ) = C( 1:m, n-l+1:n ) - ...
!                            W( 1:m, 1:k ) * V( 1:k, 1:l )
!
         IF( L.GT.0 ) &
     &      CALL DGEMM( 'No transpose', 'No transpose', M, L, K, -ONE, &
     &                  WORK, LDWORK, V, LDV, ONE, C( 1, N-L+1 ), LDC )
!
      END IF
!
      RETURN
!
!     End of DLARZB
!
      END