ESMF_DLARZB Subroutine

subroutine ESMF_DLARZB(SIDE, TRANS, DIRECT, STOREV, M, N, K, L, V, LDV, T, LDT, C, LDC, WORK, LDWORK)

\brief \b ESMF_DLARZB \htmlonly Download ESMF_DLARZB + dependencies [TGZ] [ZIP] [TXT] \endhtmlonly \par Purpose:

\verbatim

ESMF_DLARZB applies a real block reflector H or its transpose H**T to a real distributed M-by-N C from the left or the right.

Currently, only STOREV = ‘R’ and DIRECT = ‘B’ are supported. \endverbatim \param[in] SIDE \verbatim SIDE is CHARACTER1 = ‘L’: apply H or HT from the Left = ‘R’: apply H or H*T from the Right \endverbatim

\param[in] TRANS \verbatim TRANS is CHARACTER1 = ‘N’: apply H (No transpose) = ‘C’: apply H*T (Transpose) \endverbatim

\param[in] DIRECT \verbatim DIRECT is CHARACTER*1 Indicates how H is formed from a product of elementary reflectors = ‘F’: H = H(1) H(2) . . . H(k) (Forward, not supported yet) = ‘B’: H = H(k) . . . H(2) H(1) (Backward) \endverbatim

\param[in] STOREV \verbatim STOREV is CHARACTER*1 Indicates how the vectors which define the elementary reflectors are stored: = ‘C’: Columnwise (not supported yet) = ‘R’: Rowwise \endverbatim

\param[in] M \verbatim M is INTEGER The number of rows of the matrix C. \endverbatim

\param[in] N \verbatim N is INTEGER The number of columns of the matrix C. \endverbatim

\param[in] K \verbatim K is INTEGER The order of the matrix T (= the number of elementary reflectors whose product defines the block reflector). \endverbatim

\param[in] L \verbatim L is INTEGER The number of columns of the matrix V containing the meaningful part of the Householder reflectors. If SIDE = ‘L’, M >= L >= 0, if SIDE = ‘R’, N >= L >= 0. \endverbatim

\param[in] V \verbatim V is DOUBLE PRECISION array, dimension (LDV,NV). If STOREV = ‘C’, NV = K; if STOREV = ‘R’, NV = L. \endverbatim

\param[in] LDV \verbatim LDV is INTEGER The leading dimension of the array V. If STOREV = ‘C’, LDV >= L; if STOREV = ‘R’, LDV >= K. \endverbatim

\param[in] T \verbatim T is DOUBLE PRECISION array, dimension (LDT,K) The triangular K-by-K matrix T in the representation of the block reflector. \endverbatim

\param[in] LDT \verbatim LDT is INTEGER The leading dimension of the array T. LDT >= K. \endverbatim

\param[in,out] C \verbatim C is DOUBLE PRECISION array, dimension (LDC,N) On entry, the M-by-N matrix C. On exit, C is overwritten by HC or HTC or CH or CH**T. \endverbatim

\param[in] LDC \verbatim LDC is INTEGER The leading dimension of the array C. LDC >= max(1,M). \endverbatim

\param[out] WORK \verbatim WORK is DOUBLE PRECISION array, dimension (LDWORK,K) \endverbatim

\param[in] LDWORK \verbatim LDWORK is INTEGER The leading dimension of the array WORK. If SIDE = ‘L’, LDWORK >= max(1,N); if SIDE = ‘R’, LDWORK >= max(1,M). \endverbatim \author Univ. of Tennessee \author Univ. of California Berkeley \author Univ. of Colorado Denver \author NAG Ltd. \date November 2011 \ingroup doubleOTHERcomputational \par Contributors:

A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA \par Further Details:

\verbatim \endverbatim

Arguments

Type IntentOptional Attributes Name
character(len=1) :: SIDE
character(len=1) :: TRANS
character(len=1) :: DIRECT
character(len=1) :: STOREV
integer :: M
integer :: N
integer :: K
integer :: L
double precision :: V(LDV,*)
integer :: LDV
double precision :: T(LDT,*)
integer :: LDT
double precision :: C(LDC,*)
integer :: LDC
double precision :: WORK(LDWORK,*)
integer :: LDWORK