dlanst.F90 Source File


Source Code

#include "ESMF_LapackBlas.inc"
!> \brief \b DLANST
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!> \htmlonly
!> Download DLANST + dependencies
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlanst.f">
!> [TGZ]</a>
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlanst.f">
!> [ZIP]</a>
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlanst.f">
!> [TXT]</a>
!> \endhtmlonly
!
!  Definition:
!  ===========
!
!       DOUBLE PRECISION FUNCTION DLANST( NORM, N, D, E )
!
!       .. Scalar Arguments ..
!       CHARACTER          NORM
!       INTEGER            N
!       ..
!       .. Array Arguments ..
!       DOUBLE PRECISION   D( * ), E( * )
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> DLANST  returns the value of the one norm,  or the Frobenius norm, or
!> the  infinity norm,  or the  element of  largest absolute value  of a
!> real symmetric tridiagonal matrix A.
!> \endverbatim
!>
!> \return DLANST
!> \verbatim
!>
!>    DLANST = ( max(abs(A(i,j))), NORM = 'M' or 'm'
!>             (
!>             ( norm1(A),         NORM = '1', 'O' or 'o'
!>             (
!>             ( normI(A),         NORM = 'I' or 'i'
!>             (
!>             ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
!>
!> where  norm1  denotes the  one norm of a matrix (maximum column sum),
!> normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
!> normF  denotes the  Frobenius norm of a matrix (square root of sum of
!> squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] NORM
!> \verbatim
!>          NORM is CHARACTER*1
!>          Specifies the value to be returned in DLANST as described
!>          above.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>          The order of the matrix A.  N >= 0.  When N = 0, DLANST is
!>          set to zero.
!> \endverbatim
!>
!> \param[in] D
!> \verbatim
!>          D is DOUBLE PRECISION array, dimension (N)
!>          The diagonal elements of A.
!> \endverbatim
!>
!> \param[in] E
!> \verbatim
!>          E is DOUBLE PRECISION array, dimension (N-1)
!>          The (n-1) sub-diagonal or super-diagonal elements of A.
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date November 2011
!
!> \ingroup auxOTHERauxiliary
!
!  =====================================================================
      DOUBLE PRECISION FUNCTION DLANST( NORM, N, D, E )
!
!  -- LAPACK auxiliary routine (version 3.4.0) --
!  -- LAPACK is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     November 2011
!
!     .. Scalar Arguments ..
      CHARACTER          NORM
      INTEGER            N
!     ..
!     .. Array Arguments ..
      DOUBLE PRECISION   D( * ), E( * )
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
      DOUBLE PRECISION   ONE, ZERO
      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
!     ..
!     .. Local Scalars ..
      INTEGER            I
      DOUBLE PRECISION   ANORM, SCALE, SUM
!     ..
!     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
!     ..
!     .. External Subroutines ..
      EXTERNAL           DLASSQ
!     ..
!     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX, SQRT
!     ..
!     .. Executable Statements ..
!
      IF( N.LE.0 ) THEN
         ANORM = ZERO
      ELSE IF( LSAME( NORM, 'M' ) ) THEN
!
!        Find max(abs(A(i,j))).
!
         ANORM = ABS( D( N ) )
         DO 10 I = 1, N - 1
            ANORM = MAX( ANORM, ABS( D( I ) ) )
            ANORM = MAX( ANORM, ABS( E( I ) ) )
   10    CONTINUE
      ELSE IF( LSAME( NORM, 'O' ) .OR. NORM.EQ.'1' .OR. &
     &         LSAME( NORM, 'I' ) ) THEN
!
!        Find norm1(A).
!
         IF( N.EQ.1 ) THEN
            ANORM = ABS( D( 1 ) )
         ELSE
            ANORM = MAX( ABS( D( 1 ) )+ABS( E( 1 ) ), &
     &              ABS( E( N-1 ) )+ABS( D( N ) ) )
            DO 20 I = 2, N - 1
               ANORM = MAX( ANORM, ABS( D( I ) )+ABS( E( I ) )+ &
     &                 ABS( E( I-1 ) ) )
   20       CONTINUE
         END IF
      ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
!
!        Find normF(A).
!
         SCALE = ZERO
         SUM = ONE
         IF( N.GT.1 ) THEN
            CALL DLASSQ( N-1, E, 1, SCALE, SUM )
            SUM = 2*SUM
         END IF
         CALL DLASSQ( N, D, 1, SCALE, SUM )
         ANORM = SCALE*SQRT( SUM )
      END IF
!
      DLANST = ANORM
      RETURN
!
!     End of DLANST
!
      END