\brief \b ESMF_DLANST \htmlonly Download ESMF_DLANST + dependencies [TGZ] [ZIP] [TXT] \endhtmlonly \par Purpose:
\verbatim
ESMF_DLANST returns the value of the one norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real symmetric tridiagonal matrix A. \endverbatim
\return ESMF_DLANST \verbatim
ESMF_DLANST = ( max(abs(A(i,j))), NORM = ‘M’ or ‘m’ ( ( norm1(A), NORM = ‘1’, ‘O’ or ‘o’ ( ( normI(A), NORM = ‘I’ or ‘i’ ( ( normF(A), NORM = ‘F’, ‘f’, ‘E’ or ‘e’
where norm1 denotes the one norm of a matrix (maximum column sum), normI denotes the infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a matrix (square root of sum of squares). Note that max(abs(A(i,j))) is not a consistent matrix norm. \endverbatim \param[in] NORM \verbatim NORM is CHARACTER*1 Specifies the value to be returned in ESMF_DLANST as described above. \endverbatim
\param[in] N \verbatim N is INTEGER The order of the matrix A. N >= 0. When N = 0, ESMF_DLANST is set to zero. \endverbatim
\param[in] D \verbatim D is DOUBLE PRECISION array, dimension (N) The diagonal elements of A. \endverbatim
\param[in] E \verbatim E is DOUBLE PRECISION array, dimension (N-1) The (n-1) sub-diagonal or super-diagonal elements of A. \endverbatim \author Univ. of Tennessee \author Univ. of California Berkeley \author Univ. of Colorado Denver \author NAG Ltd. \date November 2011 \ingroup auxOTHERauxiliary
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
character(len=1) | :: | NORM | ||||
integer | :: | N | ||||
double precision | :: | D(*) | ||||
double precision | :: | E(*) |