ESMF_DLANST Function

function ESMF_DLANST(NORM, N, D, E)

\brief \b ESMF_DLANST \htmlonly Download ESMF_DLANST + dependencies [TGZ] [ZIP] [TXT] \endhtmlonly \par Purpose:

\verbatim

ESMF_DLANST returns the value of the one norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real symmetric tridiagonal matrix A. \endverbatim

\return ESMF_DLANST \verbatim

ESMF_DLANST = ( max(abs(A(i,j))), NORM = ‘M’ or ‘m’ ( ( norm1(A), NORM = ‘1’, ‘O’ or ‘o’ ( ( normI(A), NORM = ‘I’ or ‘i’ ( ( normF(A), NORM = ‘F’, ‘f’, ‘E’ or ‘e’

where norm1 denotes the one norm of a matrix (maximum column sum), normI denotes the infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a matrix (square root of sum of squares). Note that max(abs(A(i,j))) is not a consistent matrix norm. \endverbatim \param[in] NORM \verbatim NORM is CHARACTER*1 Specifies the value to be returned in ESMF_DLANST as described above. \endverbatim

\param[in] N \verbatim N is INTEGER The order of the matrix A. N >= 0. When N = 0, ESMF_DLANST is set to zero. \endverbatim

\param[in] D \verbatim D is DOUBLE PRECISION array, dimension (N) The diagonal elements of A. \endverbatim

\param[in] E \verbatim E is DOUBLE PRECISION array, dimension (N-1) The (n-1) sub-diagonal or super-diagonal elements of A. \endverbatim \author Univ. of Tennessee \author Univ. of California Berkeley \author Univ. of Colorado Denver \author NAG Ltd. \date November 2011 \ingroup auxOTHERauxiliary

Arguments

Type IntentOptional Attributes Name
character(len=1) :: NORM
integer :: N
double precision :: D(*)
double precision :: E(*)

Return Value doubleprecision