dlaed5.F90 Source File


Source Code

#include "ESMF_LapackBlas.inc"
!> \brief \b DLAED5 used by sstedc. Solves the 2-by-2 secular equation.
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!> \htmlonly
!> Download DLAED5 + dependencies
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaed5.f">
!> [TGZ]</a>
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaed5.f">
!> [ZIP]</a>
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaed5.f">
!> [TXT]</a>
!> \endhtmlonly
!
!  Definition:
!  ===========
!
!       SUBROUTINE DLAED5( I, D, Z, DELTA, RHO, DLAM )
!
!       .. Scalar Arguments ..
!       INTEGER            I
!       DOUBLE PRECISION   DLAM, RHO
!       ..
!       .. Array Arguments ..
!       DOUBLE PRECISION   D( 2 ), DELTA( 2 ), Z( 2 )
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> This subroutine computes the I-th eigenvalue of a symmetric rank-one
!> modification of a 2-by-2 diagonal matrix
!>
!>            diag( D )  +  RHO * Z * transpose(Z) .
!>
!> The diagonal elements in the array D are assumed to satisfy
!>
!>            D(i) < D(j)  for  i < j .
!>
!> We also assume RHO > 0 and that the Euclidean norm of the vector
!> Z is one.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] I
!> \verbatim
!>          I is INTEGER
!>         The index of the eigenvalue to be computed.  I = 1 or I = 2.
!> \endverbatim
!>
!> \param[in] D
!> \verbatim
!>          D is DOUBLE PRECISION array, dimension (2)
!>         The original eigenvalues.  We assume D(1) < D(2).
!> \endverbatim
!>
!> \param[in] Z
!> \verbatim
!>          Z is DOUBLE PRECISION array, dimension (2)
!>         The components of the updating vector.
!> \endverbatim
!>
!> \param[out] DELTA
!> \verbatim
!>          DELTA is DOUBLE PRECISION array, dimension (2)
!>         The vector DELTA contains the information necessary
!>         to construct the eigenvectors.
!> \endverbatim
!>
!> \param[in] RHO
!> \verbatim
!>          RHO is DOUBLE PRECISION
!>         The scalar in the symmetric updating formula.
!> \endverbatim
!>
!> \param[out] DLAM
!> \verbatim
!>          DLAM is DOUBLE PRECISION
!>         The computed lambda_I, the I-th updated eigenvalue.
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup auxOTHERcomputational
!
!> \par Contributors:
!  ==================
!>
!>     Ren-Cang Li, Computer Science Division, University of California
!>     at Berkeley, USA
!>
!  =====================================================================
      SUBROUTINE DLAED5( I, D, Z, DELTA, RHO, DLAM )
!
!  -- LAPACK computational routine (version 3.7.0) --
!  -- LAPACK is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
      INTEGER            I
      DOUBLE PRECISION   DLAM, RHO
!     ..
!     .. Array Arguments ..
      DOUBLE PRECISION   D( 2 ), DELTA( 2 ), Z( 2 )
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE, TWO, FOUR
      PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0, &
                         FOUR = 4.0D0 )
!     ..
!     .. Local Scalars ..
      DOUBLE PRECISION   B, C, DEL, TAU, TEMP, W
!     ..
!     .. Intrinsic Functions ..
      INTRINSIC          ABS, SQRT
!     ..
!     .. Executable Statements ..
!
      DEL = D( 2 ) - D( 1 )
      IF( I.EQ.1 ) THEN
         W = ONE + TWO*RHO*( Z( 2 )*Z( 2 )-Z( 1 )*Z( 1 ) ) / DEL
         IF( W.GT.ZERO ) THEN
            B = DEL + RHO*( Z( 1 )*Z( 1 )+Z( 2 )*Z( 2 ) )
            C = RHO*Z( 1 )*Z( 1 )*DEL
!
!           B > ZERO, always
!
            TAU = TWO*C / ( B+SQRT( ABS( B*B-FOUR*C ) ) )
            DLAM = D( 1 ) + TAU
            DELTA( 1 ) = -Z( 1 ) / TAU
            DELTA( 2 ) = Z( 2 ) / ( DEL-TAU )
         ELSE
            B = -DEL + RHO*( Z( 1 )*Z( 1 )+Z( 2 )*Z( 2 ) )
            C = RHO*Z( 2 )*Z( 2 )*DEL
            IF( B.GT.ZERO ) THEN
               TAU = -TWO*C / ( B+SQRT( B*B+FOUR*C ) )
            ELSE
               TAU = ( B-SQRT( B*B+FOUR*C ) ) / TWO
            END IF
            DLAM = D( 2 ) + TAU
            DELTA( 1 ) = -Z( 1 ) / ( DEL+TAU )
            DELTA( 2 ) = -Z( 2 ) / TAU
         END IF
         TEMP = SQRT( DELTA( 1 )*DELTA( 1 )+DELTA( 2 )*DELTA( 2 ) )
         DELTA( 1 ) = DELTA( 1 ) / TEMP
         DELTA( 2 ) = DELTA( 2 ) / TEMP
      ELSE
!
!     Now I=2
!
         B = -DEL + RHO*( Z( 1 )*Z( 1 )+Z( 2 )*Z( 2 ) )
         C = RHO*Z( 2 )*Z( 2 )*DEL
         IF( B.GT.ZERO ) THEN
            TAU = ( B+SQRT( B*B+FOUR*C ) ) / TWO
         ELSE
            TAU = TWO*C / ( -B+SQRT( B*B+FOUR*C ) )
         END IF
         DLAM = D( 2 ) + TAU
         DELTA( 1 ) = -Z( 1 ) / ( DEL+TAU )
         DELTA( 2 ) = -Z( 2 ) / TAU
         TEMP = SQRT( DELTA( 1 )*DELTA( 1 )+DELTA( 2 )*DELTA( 2 ) )
         DELTA( 1 ) = DELTA( 1 ) / TEMP
         DELTA( 2 ) = DELTA( 2 ) / TEMP
      END IF
      RETURN
!
!     End OF DLAED5
!
      END