\brief \b ESMF_DLAED5 used by sstedc. Solves the 2-by-2 secular equation. \htmlonly Download ESMF_DLAED5 + dependencies [TGZ] [ZIP] [TXT] \endhtmlonly \par Purpose:
\verbatim
This subroutine computes the I-th eigenvalue of a symmetric rank-one modification of a 2-by-2 diagonal matrix
diag( D ) + RHO * Z * transpose(Z) .
The diagonal elements in the array D are assumed to satisfy
D(i) < D(j) for i < j .
We also assume RHO > 0 and that the Euclidean norm of the vector Z is one. \endverbatim \param[in] I \verbatim I is INTEGER The index of the eigenvalue to be computed. I = 1 or I = 2. \endverbatim
\param[in] D \verbatim D is DOUBLE PRECISION array, dimension (2) The original eigenvalues. We assume D(1) < D(2). \endverbatim
\param[in] Z \verbatim Z is DOUBLE PRECISION array, dimension (2) The components of the updating vector. \endverbatim
\param[out] DELTA \verbatim DELTA is DOUBLE PRECISION array, dimension (2) The vector DELTA contains the information necessary to construct the eigenvectors. \endverbatim
\param[in] RHO \verbatim RHO is DOUBLE PRECISION The scalar in the symmetric updating formula. \endverbatim
\param[out] DLAM \verbatim DLAM is DOUBLE PRECISION The computed lambda_I, the I-th updated eigenvalue. \endverbatim \author Univ. of Tennessee \author Univ. of California Berkeley \author Univ. of Colorado Denver \author NAG Ltd. \date December 2016 \ingroup auxOTHERcomputational \par Contributors:
Ren-Cang Li, Computer Science Division, University of California
at Berkeley, USA
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
integer | :: | I | ||||
double precision | :: | D(2) | ||||
double precision | :: | Z(2) | ||||
double precision | :: | DELTA(2) | ||||
double precision | :: | RHO | ||||
double precision | :: | DLAM |