dtzrzf.F90 Source File


Source Code

#include "ESMF_LapackBlas.inc"
!> \brief \b DTZRZF
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!> \htmlonly
!> Download DTZRZF + dependencies
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtzrzf.f">
!> [TGZ]</a>
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtzrzf.f">
!> [ZIP]</a>
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtzrzf.f">
!> [TXT]</a>
!> \endhtmlonly
!
!  Definition:
!  ===========
!
!       SUBROUTINE DTZRZF( M, N, A, LDA, TAU, WORK, LWORK, INFO )
!
!       .. Scalar Arguments ..
!       INTEGER            INFO, LDA, LWORK, M, N
!       ..
!       .. Array Arguments ..
!       DOUBLE PRECISION   A( LDA, * ), TAU( * ), WORK( * )
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> DTZRZF reduces the M-by-N ( M<=N ) real upper trapezoidal matrix A
!> to upper triangular form by means of orthogonal transformations.
!>
!> The upper trapezoidal matrix A is factored as
!>
!>    A = ( R  0 ) * Z,
!>
!> where Z is an N-by-N orthogonal matrix and R is an M-by-M upper
!> triangular matrix.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] M
!> \verbatim
!>          M is INTEGER
!>          The number of rows of the matrix A.  M >= 0.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>          The number of columns of the matrix A.  N >= M.
!> \endverbatim
!>
!> \param[in,out] A
!> \verbatim
!>          A is DOUBLE PRECISION array, dimension (LDA,N)
!>          On entry, the leading M-by-N upper trapezoidal part of the
!>          array A must contain the matrix to be factorized.
!>          On exit, the leading M-by-M upper triangular part of A
!>          contains the upper triangular matrix R, and elements M+1 to
!>          N of the first M rows of A, with the array TAU, represent the
!>          orthogonal matrix Z as a product of M elementary reflectors.
!> \endverbatim
!>
!> \param[in] LDA
!> \verbatim
!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,M).
!> \endverbatim
!>
!> \param[out] TAU
!> \verbatim
!>          TAU is DOUBLE PRECISION array, dimension (M)
!>          The scalar factors of the elementary reflectors.
!> \endverbatim
!>
!> \param[out] WORK
!> \verbatim
!>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
!>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
!> \endverbatim
!>
!> \param[in] LWORK
!> \verbatim
!>          LWORK is INTEGER
!>          The dimension of the array WORK.  LWORK >= max(1,M).
!>          For optimum performance LWORK >= M*NB, where NB is
!>          the optimal blocksize.
!>
!>          If LWORK = -1, then a workspace query is assumed; the routine
!>          only calculates the optimal size of the WORK array, returns
!>          this value as the first entry of the WORK array, and no error
!>          message related to LWORK is issued by XERBLA.
!> \endverbatim
!>
!> \param[out] INFO
!> \verbatim
!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date November 2011
!
!> \ingroup doubleOTHERcomputational
!
!> \par Contributors:
!  ==================
!>
!>    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  The factorization is obtained by Householder's method.  The kth
!>  transformation matrix, Z( k ), which is used to introduce zeros into
!>  the ( m - k + 1 )th row of A, is given in the form
!>
!>     Z( k ) = ( I     0   ),
!>              ( 0  T( k ) )
!>
!>  where
!>
!>     T( k ) = I - tau*u( k )*u( k )**T,   u( k ) = (   1    ),
!>                                                 (   0    )
!>                                                 ( z( k ) )
!>
!>  tau is a scalar and z( k ) is an ( n - m ) element vector.
!>  tau and z( k ) are chosen to annihilate the elements of the kth row
!>  of X.
!>
!>  The scalar tau is returned in the kth element of TAU and the vector
!>  u( k ) in the kth row of A, such that the elements of z( k ) are
!>  in  a( k, m + 1 ), ..., a( k, n ). The elements of R are returned in
!>  the upper triangular part of A.
!>
!>  Z is given by
!>
!>     Z =  Z( 1 ) * Z( 2 ) * ... * Z( m ).
!> \endverbatim
!>
!  =====================================================================
      SUBROUTINE DTZRZF( M, N, A, LDA, TAU, WORK, LWORK, INFO )
!
!  -- LAPACK computational routine (version 3.4.0) --
!  -- LAPACK is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     November 2011
!
!     .. Scalar Arguments ..
      INTEGER            INFO, LDA, LWORK, M, N
!     ..
!     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * ), TAU( * ), WORK( * )
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
      DOUBLE PRECISION   ZERO
      PARAMETER          ( ZERO = 0.0D+0 )
!     ..
!     .. Local Scalars ..
      LOGICAL            LQUERY
      INTEGER            I, IB, IWS, KI, KK, LDWORK, LWKMIN, LWKOPT, &
     &                   M1, MU, NB, NBMIN, NX
!     ..
!     .. External Subroutines ..
      EXTERNAL           XERBLA, DLARZB, DLARZT, DLATRZ
!     ..
!     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN
!     ..
!     .. External Functions ..
      INTEGER            ILAENV
      EXTERNAL           ILAENV
!     ..
!     .. Executable Statements ..
!
!     Test the input arguments
!
      INFO = 0
      LQUERY = ( LWORK.EQ.-1 )
      IF( M.LT.0 ) THEN
         INFO = -1
      ELSE IF( N.LT.M ) THEN
         INFO = -2
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
         INFO = -4
      END IF
!
      IF( INFO.EQ.0 ) THEN
         IF( M.EQ.0 .OR. M.EQ.N ) THEN
            LWKOPT = 1
            LWKMIN = 1
         ELSE
!
!           Determine the block size.
!
            NB = ILAENV( 1, 'DGERQF', ' ', M, N, -1, -1 )
            LWKOPT = M*NB
            LWKMIN = MAX( 1, M )
         END IF
         WORK( 1 ) = LWKOPT
!
         IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
            INFO = -7
         END IF
      END IF
!
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DTZRZF', -INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         RETURN
      END IF
!
!     Quick return if possible
!
      IF( M.EQ.0 ) THEN
         RETURN
      ELSE IF( M.EQ.N ) THEN
         DO 10 I = 1, N
            TAU( I ) = ZERO
   10    CONTINUE
         RETURN
      END IF
!
      NBMIN = 2
      NX = 1
      IWS = M
      IF( NB.GT.1 .AND. NB.LT.M ) THEN
!
!        Determine when to cross over from blocked to unblocked code.
!
         NX = MAX( 0, ILAENV( 3, 'DGERQF', ' ', M, N, -1, -1 ) )
         IF( NX.LT.M ) THEN
!
!           Determine if workspace is large enough for blocked code.
!
            LDWORK = M
            IWS = LDWORK*NB
            IF( LWORK.LT.IWS ) THEN
!
!              Not enough workspace to use optimal NB:  reduce NB and
!              determine the minimum value of NB.
!
               NB = LWORK / LDWORK
               NBMIN = MAX( 2, ILAENV( 2, 'DGERQF', ' ', M, N, -1, &
     &                 -1 ) )
            END IF
         END IF
      END IF
!
      IF( NB.GE.NBMIN .AND. NB.LT.M .AND. NX.LT.M ) THEN
!
!        Use blocked code initially.
!        The last kk rows are handled by the block method.
!
         M1 = MIN( M+1, N )
         KI = ( ( M-NX-1 ) / NB )*NB
         KK = MIN( M, KI+NB )
!
         DO 20 I = M - KK + KI + 1, M - KK + 1, -NB
            IB = MIN( M-I+1, NB )
!
!           Compute the TZ factorization of the current block
!           A(i:i+ib-1,i:n)
!
            CALL DLATRZ( IB, N-I+1, N-M, A( I, I ), LDA, TAU( I ), &
     &                   WORK )
            IF( I.GT.1 ) THEN
!
!              Form the triangular factor of the block reflector
!              H = H(i+ib-1) . . . H(i+1) H(i)
!
               CALL DLARZT( 'Backward', 'Rowwise', N-M, IB, A( I, M1 ), &
     &                      LDA, TAU( I ), WORK, LDWORK )
!
!              Apply H to A(1:i-1,i:n) from the right
!
               CALL DLARZB( 'Right', 'No transpose', 'Backward', &
     &                      'Rowwise', I-1, N-I+1, IB, N-M, A( I, M1 ), &
     &                      LDA, WORK, LDWORK, A( 1, I ), LDA, &
     &                      WORK( IB+1 ), LDWORK )
            END IF
   20    CONTINUE
         MU = I + NB - 1
      ELSE
         MU = M
      END IF
!
!     Use unblocked code to factor the last or only block
!
      IF( MU.GT.0 ) &
     &   CALL DLATRZ( MU, N, N-M, A, LDA, TAU, WORK )
!
      WORK( 1 ) = LWKOPT
!
      RETURN
!
!     End of DTZRZF
!
      END