dtrsm.F90 Source File


Source Code

#include "ESMF_LapackBlas.inc"
!> \brief \b DTRSM
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE DTRSM(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB)
!
!       .. Scalar Arguments ..
!       DOUBLE PRECISION ALPHA
!       INTEGER LDA,LDB,M,N
!       CHARACTER DIAG,SIDE,TRANSA,UPLO
!       ..
!       .. Array Arguments ..
!       DOUBLE PRECISION A(LDA,*),B(LDB,*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> DTRSM  solves one of the matrix equations
!>
!>    op( A )*X = alpha*B,   or   X*op( A ) = alpha*B,
!>
!> where alpha is a scalar, X and B are m by n matrices, A is a unit, or
!> non-unit,  upper or lower triangular matrix  and  op( A )  is one  of
!>
!>    op( A ) = A   or   op( A ) = A**T.
!>
!> The matrix X is overwritten on B.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] SIDE
!> \verbatim
!>          SIDE is CHARACTER*1
!>           On entry, SIDE specifies whether op( A ) appears on the left
!>           or right of X as follows:
!>
!>              SIDE = 'L' or 'l'   op( A )*X = alpha*B.
!>
!>              SIDE = 'R' or 'r'   X*op( A ) = alpha*B.
!> \endverbatim
!>
!> \param[in] UPLO
!> \verbatim
!>          UPLO is CHARACTER*1
!>           On entry, UPLO specifies whether the matrix A is an upper or
!>           lower triangular matrix as follows:
!>
!>              UPLO = 'U' or 'u'   A is an upper triangular matrix.
!>
!>              UPLO = 'L' or 'l'   A is a lower triangular matrix.
!> \endverbatim
!>
!> \param[in] TRANSA
!> \verbatim
!>          TRANSA is CHARACTER*1
!>           On entry, TRANSA specifies the form of op( A ) to be used in
!>           the matrix multiplication as follows:
!>
!>              TRANSA = 'N' or 'n'   op( A ) = A.
!>
!>              TRANSA = 'T' or 't'   op( A ) = A**T.
!>
!>              TRANSA = 'C' or 'c'   op( A ) = A**T.
!> \endverbatim
!>
!> \param[in] DIAG
!> \verbatim
!>          DIAG is CHARACTER*1
!>           On entry, DIAG specifies whether or not A is unit triangular
!>           as follows:
!>
!>              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
!>
!>              DIAG = 'N' or 'n'   A is not assumed to be unit
!>                                  triangular.
!> \endverbatim
!>
!> \param[in] M
!> \verbatim
!>          M is INTEGER
!>           On entry, M specifies the number of rows of B. M must be at
!>           least zero.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry, N specifies the number of columns of B.  N must be
!>           at least zero.
!> \endverbatim
!>
!> \param[in] ALPHA
!> \verbatim
!>          ALPHA is DOUBLE PRECISION.
!>           On entry,  ALPHA specifies the scalar  alpha. When  alpha is
!>           zero then  A is not referenced and  B need not be set before
!>           entry.
!> \endverbatim
!>
!> \param[in] A
!> \verbatim
!>          A is DOUBLE PRECISION array of DIMENSION ( LDA, k ),
!>           where k is m when SIDE = 'L' or 'l'
!>             and k is n when SIDE = 'R' or 'r'.
!>           Before entry  with  UPLO = 'U' or 'u',  the  leading  k by k
!>           upper triangular part of the array  A must contain the upper
!>           triangular matrix  and the strictly lower triangular part of
!>           A is not referenced.
!>           Before entry  with  UPLO = 'L' or 'l',  the  leading  k by k
!>           lower triangular part of the array  A must contain the lower
!>           triangular matrix  and the strictly upper triangular part of
!>           A is not referenced.
!>           Note that when  DIAG = 'U' or 'u',  the diagonal elements of
!>           A  are not referenced either,  but are assumed to be  unity.
!> \endverbatim
!>
!> \param[in] LDA
!> \verbatim
!>          LDA is INTEGER
!>           On entry, LDA specifies the first dimension of A as declared
!>           in the calling (sub) program.  When  SIDE = 'L' or 'l'  then
!>           LDA  must be at least  max( 1, m ),  when  SIDE = 'R' or 'r'
!>           then LDA must be at least max( 1, n ).
!> \endverbatim
!>
!> \param[in,out] B
!> \verbatim
!>          B is DOUBLE PRECISION array of DIMENSION ( LDB, n ).
!>           Before entry,  the leading  m by n part of the array  B must
!>           contain  the  right-hand  side  matrix  B,  and  on exit  is
!>           overwritten by the solution matrix  X.
!> \endverbatim
!>
!> \param[in] LDB
!> \verbatim
!>          LDB is INTEGER
!>           On entry, LDB specifies the first dimension of B as declared
!>           in  the  calling  (sub)  program.   LDB  must  be  at  least
!>           max( 1, m ).
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date November 2011
!
!> \ingroup double_blas_level3
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 3 Blas routine.
!>
!>
!>  -- Written on 8-February-1989.
!>     Jack Dongarra, Argonne National Laboratory.
!>     Iain Duff, AERE Harwell.
!>     Jeremy Du Croz, Numerical Algorithms Group Ltd.
!>     Sven Hammarling, Numerical Algorithms Group Ltd.
!> \endverbatim
!>
!  =====================================================================
      SUBROUTINE DTRSM(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB)
!
!  -- Reference BLAS level3 routine (version 3.4.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     November 2011
!
!     .. Scalar Arguments ..
      DOUBLE PRECISION ALPHA
      INTEGER LDA,LDB,M,N
      CHARACTER DIAG,SIDE,TRANSA,UPLO
!     ..
!     .. Array Arguments ..
      DOUBLE PRECISION A(LDA,*),B(LDB,*)
!     ..
!
!  =====================================================================
!
!     .. External Functions ..
      LOGICAL LSAME
      EXTERNAL LSAME
!     ..
!     .. External Subroutines ..
      EXTERNAL XERBLA
!     ..
!     .. Intrinsic Functions ..
      INTRINSIC MAX
!     ..
!     .. Local Scalars ..
      DOUBLE PRECISION TEMP
      INTEGER I,INFO,J,K,NROWA
      LOGICAL LSIDE,NOUNIT,UPPER
!     ..
!     .. Parameters ..
      DOUBLE PRECISION ONE,ZERO
      PARAMETER (ONE=1.0D+0,ZERO=0.0D+0)
!     ..
!
!     Test the input parameters.
!
      LSIDE = LSAME(SIDE,'L')
      IF (LSIDE) THEN
          NROWA = M
      ELSE
          NROWA = N
      END IF
      NOUNIT = LSAME(DIAG,'N')
      UPPER = LSAME(UPLO,'U')
!
      INFO = 0
      IF ((.NOT.LSIDE) .AND. (.NOT.LSAME(SIDE,'R'))) THEN
          INFO = 1
      ELSE IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN
          INFO = 2
      ELSE IF ((.NOT.LSAME(TRANSA,'N')) .AND. &
     &         (.NOT.LSAME(TRANSA,'T')) .AND. &
     &         (.NOT.LSAME(TRANSA,'C'))) THEN
          INFO = 3
      ELSE IF ((.NOT.LSAME(DIAG,'U')) .AND. (.NOT.LSAME(DIAG,'N'))) THEN
          INFO = 4
      ELSE IF (M.LT.0) THEN
          INFO = 5
      ELSE IF (N.LT.0) THEN
          INFO = 6
      ELSE IF (LDA.LT.MAX(1,NROWA)) THEN
          INFO = 9
      ELSE IF (LDB.LT.MAX(1,M)) THEN
          INFO = 11
      END IF
      IF (INFO.NE.0) THEN
          CALL XERBLA('DTRSM ',INFO)
          RETURN
      END IF
!
!     Quick return if possible.
!
      IF (M.EQ.0 .OR. N.EQ.0) RETURN
!
!     And when  alpha.eq.zero.
!
      IF (ALPHA.EQ.ZERO) THEN
          DO 20 J = 1,N
              DO 10 I = 1,M
                  B(I,J) = ZERO
   10         CONTINUE
   20     CONTINUE
          RETURN
      END IF
!
!     Start the operations.
!
      IF (LSIDE) THEN
          IF (LSAME(TRANSA,'N')) THEN
!
!           Form  B := alpha*inv( A )*B.
!
              IF (UPPER) THEN
                  DO 60 J = 1,N
                      IF (ALPHA.NE.ONE) THEN
                          DO 30 I = 1,M
                              B(I,J) = ALPHA*B(I,J)
   30                     CONTINUE
                      END IF
                      DO 50 K = M,1,-1
                          IF (B(K,J).NE.ZERO) THEN
                              IF (NOUNIT) B(K,J) = B(K,J)/A(K,K)
                              DO 40 I = 1,K - 1
                                  B(I,J) = B(I,J) - B(K,J)*A(I,K)
   40                         CONTINUE
                          END IF
   50                 CONTINUE
   60             CONTINUE
              ELSE
                  DO 100 J = 1,N
                      IF (ALPHA.NE.ONE) THEN
                          DO 70 I = 1,M
                              B(I,J) = ALPHA*B(I,J)
   70                     CONTINUE
                      END IF
                      DO 90 K = 1,M
                          IF (B(K,J).NE.ZERO) THEN
                              IF (NOUNIT) B(K,J) = B(K,J)/A(K,K)
                              DO 80 I = K + 1,M
                                  B(I,J) = B(I,J) - B(K,J)*A(I,K)
   80                         CONTINUE
                          END IF
   90                 CONTINUE
  100             CONTINUE
              END IF
          ELSE
!
!           Form  B := alpha*inv( A**T )*B.
!
              IF (UPPER) THEN
                  DO 130 J = 1,N
                      DO 120 I = 1,M
                          TEMP = ALPHA*B(I,J)
                          DO 110 K = 1,I - 1
                              TEMP = TEMP - A(K,I)*B(K,J)
  110                     CONTINUE
                          IF (NOUNIT) TEMP = TEMP/A(I,I)
                          B(I,J) = TEMP
  120                 CONTINUE
  130             CONTINUE
              ELSE
                  DO 160 J = 1,N
                      DO 150 I = M,1,-1
                          TEMP = ALPHA*B(I,J)
                          DO 140 K = I + 1,M
                              TEMP = TEMP - A(K,I)*B(K,J)
  140                     CONTINUE
                          IF (NOUNIT) TEMP = TEMP/A(I,I)
                          B(I,J) = TEMP
  150                 CONTINUE
  160             CONTINUE
              END IF
          END IF
      ELSE
          IF (LSAME(TRANSA,'N')) THEN
!
!           Form  B := alpha*B*inv( A ).
!
              IF (UPPER) THEN
                  DO 210 J = 1,N
                      IF (ALPHA.NE.ONE) THEN
                          DO 170 I = 1,M
                              B(I,J) = ALPHA*B(I,J)
  170                     CONTINUE
                      END IF
                      DO 190 K = 1,J - 1
                          IF (A(K,J).NE.ZERO) THEN
                              DO 180 I = 1,M
                                  B(I,J) = B(I,J) - A(K,J)*B(I,K)
  180                         CONTINUE
                          END IF
  190                 CONTINUE
                      IF (NOUNIT) THEN
                          TEMP = ONE/A(J,J)
                          DO 200 I = 1,M
                              B(I,J) = TEMP*B(I,J)
  200                     CONTINUE
                      END IF
  210             CONTINUE
              ELSE
                  DO 260 J = N,1,-1
                      IF (ALPHA.NE.ONE) THEN
                          DO 220 I = 1,M
                              B(I,J) = ALPHA*B(I,J)
  220                     CONTINUE
                      END IF
                      DO 240 K = J + 1,N
                          IF (A(K,J).NE.ZERO) THEN
                              DO 230 I = 1,M
                                  B(I,J) = B(I,J) - A(K,J)*B(I,K)
  230                         CONTINUE
                          END IF
  240                 CONTINUE
                      IF (NOUNIT) THEN
                          TEMP = ONE/A(J,J)
                          DO 250 I = 1,M
                              B(I,J) = TEMP*B(I,J)
  250                     CONTINUE
                      END IF
  260             CONTINUE
              END IF
          ELSE
!
!           Form  B := alpha*B*inv( A**T ).
!
              IF (UPPER) THEN
                  DO 310 K = N,1,-1
                      IF (NOUNIT) THEN
                          TEMP = ONE/A(K,K)
                          DO 270 I = 1,M
                              B(I,K) = TEMP*B(I,K)
  270                     CONTINUE
                      END IF
                      DO 290 J = 1,K - 1
                          IF (A(J,K).NE.ZERO) THEN
                              TEMP = A(J,K)
                              DO 280 I = 1,M
                                  B(I,J) = B(I,J) - TEMP*B(I,K)
  280                         CONTINUE
                          END IF
  290                 CONTINUE
                      IF (ALPHA.NE.ONE) THEN
                          DO 300 I = 1,M
                              B(I,K) = ALPHA*B(I,K)
  300                     CONTINUE
                      END IF
  310             CONTINUE
              ELSE
                  DO 360 K = 1,N
                      IF (NOUNIT) THEN
                          TEMP = ONE/A(K,K)
                          DO 320 I = 1,M
                              B(I,K) = TEMP*B(I,K)
  320                     CONTINUE
                      END IF
                      DO 340 J = K + 1,N
                          IF (A(J,K).NE.ZERO) THEN
                              TEMP = A(J,K)
                              DO 330 I = 1,M
                                  B(I,J) = B(I,J) - TEMP*B(I,K)
  330                         CONTINUE
                          END IF
  340                 CONTINUE
                      IF (ALPHA.NE.ONE) THEN
                          DO 350 I = 1,M
                              B(I,K) = ALPHA*B(I,K)
  350                     CONTINUE
                      END IF
  360             CONTINUE
              END IF
          END IF
      END IF
!
      RETURN
!
!     End of DTRSM .
!
      END