dsymv.F90 Source File


Source Code

#include "ESMF_LapackBlas.inc"
!> \brief \b DSYMV
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!  Definition:
!  ===========
!
!       SUBROUTINE DSYMV(UPLO,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
!
!       .. Scalar Arguments ..
!       DOUBLE PRECISION ALPHA,BETA
!       INTEGER INCX,INCY,LDA,N
!       CHARACTER UPLO
!       ..
!       .. Array Arguments ..
!       DOUBLE PRECISION A(LDA,*),X(*),Y(*)
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> DSYMV  performs the matrix-vector  operation
!>
!>    y := alpha*A*x + beta*y,
!>
!> where alpha and beta are scalars, x and y are n element vectors and
!> A is an n by n symmetric matrix.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] UPLO
!> \verbatim
!>          UPLO is CHARACTER*1
!>           On entry, UPLO specifies whether the upper or lower
!>           triangular part of the array A is to be referenced as
!>           follows:
!>
!>              UPLO = 'U' or 'u'   Only the upper triangular part of A
!>                                  is to be referenced.
!>
!>              UPLO = 'L' or 'l'   Only the lower triangular part of A
!>                                  is to be referenced.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           On entry, N specifies the order of the matrix A.
!>           N must be at least zero.
!> \endverbatim
!>
!> \param[in] ALPHA
!> \verbatim
!>          ALPHA is DOUBLE PRECISION.
!>           On entry, ALPHA specifies the scalar alpha.
!> \endverbatim
!>
!> \param[in] A
!> \verbatim
!>          A is DOUBLE PRECISION array, dimension ( LDA, N )
!>           Before entry with  UPLO = 'U' or 'u', the leading n by n
!>           upper triangular part of the array A must contain the upper
!>           triangular part of the symmetric matrix and the strictly
!>           lower triangular part of A is not referenced.
!>           Before entry with UPLO = 'L' or 'l', the leading n by n
!>           lower triangular part of the array A must contain the lower
!>           triangular part of the symmetric matrix and the strictly
!>           upper triangular part of A is not referenced.
!> \endverbatim
!>
!> \param[in] LDA
!> \verbatim
!>          LDA is INTEGER
!>           On entry, LDA specifies the first dimension of A as declared
!>           in the calling (sub) program. LDA must be at least
!>           max( 1, n ).
!> \endverbatim
!>
!> \param[in] X
!> \verbatim
!>          X is DOUBLE PRECISION array, dimension at least
!>           ( 1 + ( n - 1 )*abs( INCX ) ).
!>           Before entry, the incremented array X must contain the n
!>           element vector x.
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>           On entry, INCX specifies the increment for the elements of
!>           X. INCX must not be zero.
!> \endverbatim
!>
!> \param[in] BETA
!> \verbatim
!>          BETA is DOUBLE PRECISION.
!>           On entry, BETA specifies the scalar beta. When BETA is
!>           supplied as zero then Y need not be set on input.
!> \endverbatim
!>
!> \param[in,out] Y
!> \verbatim
!>          Y is DOUBLE PRECISION array, dimension at least
!>           ( 1 + ( n - 1 )*abs( INCY ) ).
!>           Before entry, the incremented array Y must contain the n
!>           element vector y. On exit, Y is overwritten by the updated
!>           vector y.
!> \endverbatim
!>
!> \param[in] INCY
!> \verbatim
!>          INCY is INTEGER
!>           On entry, INCY specifies the increment for the elements of
!>           Y. INCY must not be zero.
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup double_blas_level2
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Level 2 Blas routine.
!>  The vector and matrix arguments are not referenced when N = 0, or M = 0
!>
!>  -- Written on 22-October-1986.
!>     Jack Dongarra, Argonne National Lab.
!>     Jeremy Du Croz, Nag Central Office.
!>     Sven Hammarling, Nag Central Office.
!>     Richard Hanson, Sandia National Labs.
!> \endverbatim
!>
!  =====================================================================
      SUBROUTINE DSYMV(UPLO,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
!
!  -- Reference BLAS level2 routine (version 3.7.0) --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
      DOUBLE PRECISION ALPHA,BETA
      INTEGER INCX,INCY,LDA,N
      CHARACTER UPLO
!     ..
!     .. Array Arguments ..
      DOUBLE PRECISION A(LDA,*),X(*),Y(*)
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
      DOUBLE PRECISION ONE,ZERO
      PARAMETER (ONE=1.0D+0,ZERO=0.0D+0)
!     ..
!     .. Local Scalars ..
      DOUBLE PRECISION TEMP1,TEMP2
      INTEGER I,INFO,IX,IY,J,JX,JY,KX,KY
!     ..
!     .. External Functions ..
      LOGICAL LSAME
      EXTERNAL LSAME
!     ..
!     .. External Subroutines ..
      EXTERNAL XERBLA
!     ..
!     .. Intrinsic Functions ..
      INTRINSIC MAX
!     ..
!
!     Test the input parameters.
!
      INFO = 0
      IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
          INFO = 1
      ELSE IF (N.LT.0) THEN
          INFO = 2
      ELSE IF (LDA.LT.MAX(1,N)) THEN
          INFO = 5
      ELSE IF (INCX.EQ.0) THEN
          INFO = 7
      ELSE IF (INCY.EQ.0) THEN
          INFO = 10
      END IF
      IF (INFO.NE.0) THEN
          CALL XERBLA('DSYMV ',INFO)
          RETURN
      END IF
!
!     Quick return if possible.
!
      IF ((N.EQ.0) .OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
!
!     Set up the start points in  X  and  Y.
!
      IF (INCX.GT.0) THEN
          KX = 1
      ELSE
          KX = 1 - (N-1)*INCX
      END IF
      IF (INCY.GT.0) THEN
          KY = 1
      ELSE
          KY = 1 - (N-1)*INCY
      END IF
!
!     Start the operations. In this version the elements of A are
!     accessed sequentially with one pass through the triangular part
!     of A.
!
!     First form  y := beta*y.
!
      IF (BETA.NE.ONE) THEN
          IF (INCY.EQ.1) THEN
              IF (BETA.EQ.ZERO) THEN
                  DO 10 I = 1,N
                      Y(I) = ZERO
   10             CONTINUE
              ELSE
                  DO 20 I = 1,N
                      Y(I) = BETA*Y(I)
   20             CONTINUE
              END IF
          ELSE
              IY = KY
              IF (BETA.EQ.ZERO) THEN
                  DO 30 I = 1,N
                      Y(IY) = ZERO
                      IY = IY + INCY
   30             CONTINUE
              ELSE
                  DO 40 I = 1,N
                      Y(IY) = BETA*Y(IY)
                      IY = IY + INCY
   40             CONTINUE
              END IF
          END IF
      END IF
      IF (ALPHA.EQ.ZERO) RETURN
      IF (LSAME(UPLO,'U')) THEN
!
!        Form  y  when A is stored in upper triangle.
!
          IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
              DO 60 J = 1,N
                  TEMP1 = ALPHA*X(J)
                  TEMP2 = ZERO
                  DO 50 I = 1,J - 1
                      Y(I) = Y(I) + TEMP1*A(I,J)
                      TEMP2 = TEMP2 + A(I,J)*X(I)
   50             CONTINUE
                  Y(J) = Y(J) + TEMP1*A(J,J) + ALPHA*TEMP2
   60         CONTINUE
          ELSE
              JX = KX
              JY = KY
              DO 80 J = 1,N
                  TEMP1 = ALPHA*X(JX)
                  TEMP2 = ZERO
                  IX = KX
                  IY = KY
                  DO 70 I = 1,J - 1
                      Y(IY) = Y(IY) + TEMP1*A(I,J)
                      TEMP2 = TEMP2 + A(I,J)*X(IX)
                      IX = IX + INCX
                      IY = IY + INCY
   70             CONTINUE
                  Y(JY) = Y(JY) + TEMP1*A(J,J) + ALPHA*TEMP2
                  JX = JX + INCX
                  JY = JY + INCY
   80         CONTINUE
          END IF
      ELSE
!
!        Form  y  when A is stored in lower triangle.
!
          IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
              DO 100 J = 1,N
                  TEMP1 = ALPHA*X(J)
                  TEMP2 = ZERO
                  Y(J) = Y(J) + TEMP1*A(J,J)
                  DO 90 I = J + 1,N
                      Y(I) = Y(I) + TEMP1*A(I,J)
                      TEMP2 = TEMP2 + A(I,J)*X(I)
   90             CONTINUE
                  Y(J) = Y(J) + ALPHA*TEMP2
  100         CONTINUE
          ELSE
              JX = KX
              JY = KY
              DO 120 J = 1,N
                  TEMP1 = ALPHA*X(JX)
                  TEMP2 = ZERO
                  Y(JY) = Y(JY) + TEMP1*A(J,J)
                  IX = JX
                  IY = JY
                  DO 110 I = J + 1,N
                      IX = IX + INCX
                      IY = IY + INCY
                      Y(IY) = Y(IY) + TEMP1*A(I,J)
                      TEMP2 = TEMP2 + A(I,J)*X(IX)
  110             CONTINUE
                  Y(JY) = Y(JY) + ALPHA*TEMP2
                  JX = JX + INCX
                  JY = JY + INCY
  120         CONTINUE
          END IF
      END IF
!
      RETURN
!
!     End of DSYMV .
!
      END