dsyevr.F90 Source File


Source Code

#include "ESMF_LapackBlas.inc"
!> \brief <b> DSYEVR computes the eigenvalues and, optionally, the left and/or right eigenvectors for SY matrices</b>
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!> \htmlonly
!> Download DSYEVR + dependencies
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsyevr.f">
!> [TGZ]</a>
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsyevr.f">
!> [ZIP]</a>
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsyevr.f">
!> [TXT]</a>
!> \endhtmlonly
!
!  Definition:
!  ===========
!
!       SUBROUTINE DSYEVR( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU,
!                          ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK, LWORK,
!                          IWORK, LIWORK, INFO )
!
!       .. Scalar Arguments ..
!       CHARACTER          JOBZ, RANGE, UPLO
!       INTEGER            IL, INFO, IU, LDA, LDZ, LIWORK, LWORK, M, N
!       DOUBLE PRECISION   ABSTOL, VL, VU
!       ..
!       .. Array Arguments ..
!       INTEGER            ISUPPZ( * ), IWORK( * )
!       DOUBLE PRECISION   A( LDA, * ), W( * ), WORK( * ), Z( LDZ, * )
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> DSYEVR computes selected eigenvalues and, optionally, eigenvectors
!> of a real symmetric matrix A.  Eigenvalues and eigenvectors can be
!> selected by specifying either a range of values or a range of
!> indices for the desired eigenvalues.
!>
!> DSYEVR first reduces the matrix A to tridiagonal form T with a call
!> to DSYTRD.  Then, whenever possible, DSYEVR calls DSTEMR to compute
!> the eigenspectrum using Relatively Robust Representations.  DSTEMR
!> computes eigenvalues by the dqds algorithm, while orthogonal
!> eigenvectors are computed from various "good" L D L^T representations
!> (also known as Relatively Robust Representations). Gram-Schmidt
!> orthogonalization is avoided as far as possible. More specifically,
!> the various steps of the algorithm are as follows.
!>
!> For each unreduced block (submatrix) of T,
!>    (a) Compute T - sigma I  = L D L^T, so that L and D
!>        define all the wanted eigenvalues to high relative accuracy.
!>        This means that small relative changes in the entries of D and L
!>        cause only small relative changes in the eigenvalues and
!>        eigenvectors. The standard (unfactored) representation of the
!>        tridiagonal matrix T does not have this property in general.
!>    (b) Compute the eigenvalues to suitable accuracy.
!>        If the eigenvectors are desired, the algorithm attains full
!>        accuracy of the computed eigenvalues only right before
!>        the corresponding vectors have to be computed, see steps c) and d).
!>    (c) For each cluster of close eigenvalues, select a new
!>        shift close to the cluster, find a new factorization, and refine
!>        the shifted eigenvalues to suitable accuracy.
!>    (d) For each eigenvalue with a large enough relative separation compute
!>        the corresponding eigenvector by forming a rank revealing twisted
!>        factorization. Go back to (c) for any clusters that remain.
!>
!> The desired accuracy of the output can be specified by the input
!> parameter ABSTOL.
!>
!> For more details, see DSTEMR's documentation and:
!> - Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representations
!>   to compute orthogonal eigenvectors of symmetric tridiagonal matrices,"
!>   Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004.
!> - Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors and
!>   Relative Gaps," SIAM Journal on Matrix Analysis and Applications, Vol. 25,
!>   2004.  Also LAPACK Working Note 154.
!> - Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric
!>   tridiagonal eigenvalue/eigenvector problem",
!>   Computer Science Division Technical Report No. UCB/CSD-97-971,
!>   UC Berkeley, May 1997.
!>
!>
!> Note 1 : DSYEVR calls DSTEMR when the full spectrum is requested
!> on machines which conform to the ieee-754 floating point standard.
!> DSYEVR calls DSTEBZ and DSTEIN on non-ieee machines and
!> when partial spectrum requests are made.
!>
!> Normal execution of DSTEMR may create NaNs and infinities and
!> hence may abort due to a floating point exception in environments
!> which do not handle NaNs and infinities in the ieee standard default
!> manner.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] JOBZ
!> \verbatim
!>          JOBZ is CHARACTER*1
!>          = 'N':  Compute eigenvalues only;
!>          = 'V':  Compute eigenvalues and eigenvectors.
!> \endverbatim
!>
!> \param[in] RANGE
!> \verbatim
!>          RANGE is CHARACTER*1
!>          = 'A': all eigenvalues will be found.
!>          = 'V': all eigenvalues in the half-open interval (VL,VU]
!>                 will be found.
!>          = 'I': the IL-th through IU-th eigenvalues will be found.
!>          For RANGE = 'V' or 'I' and IU - IL < N - 1, DSTEBZ and
!>          DSTEIN are called
!> \endverbatim
!>
!> \param[in] UPLO
!> \verbatim
!>          UPLO is CHARACTER*1
!>          = 'U':  Upper triangle of A is stored;
!>          = 'L':  Lower triangle of A is stored.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>          The order of the matrix A.  N >= 0.
!> \endverbatim
!>
!> \param[in,out] A
!> \verbatim
!>          A is DOUBLE PRECISION array, dimension (LDA, N)
!>          On entry, the symmetric matrix A.  If UPLO = 'U', the
!>          leading N-by-N upper triangular part of A contains the
!>          upper triangular part of the matrix A.  If UPLO = 'L',
!>          the leading N-by-N lower triangular part of A contains
!>          the lower triangular part of the matrix A.
!>          On exit, the lower triangle (if UPLO='L') or the upper
!>          triangle (if UPLO='U') of A, including the diagonal, is
!>          destroyed.
!> \endverbatim
!>
!> \param[in] LDA
!> \verbatim
!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,N).
!> \endverbatim
!>
!> \param[in] VL
!> \verbatim
!>          VL is DOUBLE PRECISION
!>          If RANGE='V', the lower bound of the interval to
!>          be searched for eigenvalues. VL < VU.
!>          Not referenced if RANGE = 'A' or 'I'.
!> \endverbatim
!>
!> \param[in] VU
!> \verbatim
!>          VU is DOUBLE PRECISION
!>          If RANGE='V', the upper bound of the interval to
!>          be searched for eigenvalues. VL < VU.
!>          Not referenced if RANGE = 'A' or 'I'.
!> \endverbatim
!>
!> \param[in] IL
!> \verbatim
!>          IL is INTEGER
!>          If RANGE='I', the index of the
!>          smallest eigenvalue to be returned.
!>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
!>          Not referenced if RANGE = 'A' or 'V'.
!> \endverbatim
!>
!> \param[in] IU
!> \verbatim
!>          IU is INTEGER
!>          If RANGE='I', the index of the
!>          largest eigenvalue to be returned.
!>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
!>          Not referenced if RANGE = 'A' or 'V'.
!> \endverbatim
!>
!> \param[in] ABSTOL
!> \verbatim
!>          ABSTOL is DOUBLE PRECISION
!>          The absolute error tolerance for the eigenvalues.
!>          An approximate eigenvalue is accepted as converged
!>          when it is determined to lie in an interval [a,b]
!>          of width less than or equal to
!>
!>                  ABSTOL + EPS *   max( |a|,|b| ) ,
!>
!>          where EPS is the machine precision.  If ABSTOL is less than
!>          or equal to zero, then  EPS*|T|  will be used in its place,
!>          where |T| is the 1-norm of the tridiagonal matrix obtained
!>          by reducing A to tridiagonal form.
!>
!>          See "Computing Small Singular Values of Bidiagonal Matrices
!>          with Guaranteed High Relative Accuracy," by Demmel and
!>          Kahan, LAPACK Working Note #3.
!>
!>          If high relative accuracy is important, set ABSTOL to
!>          DLAMCH( 'Safe minimum' ).  Doing so will guarantee that
!>          eigenvalues are computed to high relative accuracy when
!>          possible in future releases.  The current code does not
!>          make any guarantees about high relative accuracy, but
!>          future releases will. See J. Barlow and J. Demmel,
!>          "Computing Accurate Eigensystems of Scaled Diagonally
!>          Dominant Matrices", LAPACK Working Note #7, for a discussion
!>          of which matrices define their eigenvalues to high relative
!>          accuracy.
!> \endverbatim
!>
!> \param[out] M
!> \verbatim
!>          M is INTEGER
!>          The total number of eigenvalues found.  0 <= M <= N.
!>          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
!> \endverbatim
!>
!> \param[out] W
!> \verbatim
!>          W is DOUBLE PRECISION array, dimension (N)
!>          The first M elements contain the selected eigenvalues in
!>          ascending order.
!> \endverbatim
!>
!> \param[out] Z
!> \verbatim
!>          Z is DOUBLE PRECISION array, dimension (LDZ, max(1,M))
!>          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
!>          contain the orthonormal eigenvectors of the matrix A
!>          corresponding to the selected eigenvalues, with the i-th
!>          column of Z holding the eigenvector associated with W(i).
!>          If JOBZ = 'N', then Z is not referenced.
!>          Note: the user must ensure that at least max(1,M) columns are
!>          supplied in the array Z; if RANGE = 'V', the exact value of M
!>          is not known in advance and an upper bound must be used.
!>          Supplying N columns is always safe.
!> \endverbatim
!>
!> \param[in] LDZ
!> \verbatim
!>          LDZ is INTEGER
!>          The leading dimension of the array Z.  LDZ >= 1, and if
!>          JOBZ = 'V', LDZ >= max(1,N).
!> \endverbatim
!>
!> \param[out] ISUPPZ
!> \verbatim
!>          ISUPPZ is INTEGER array, dimension ( 2*max(1,M) )
!>          The support of the eigenvectors in Z, i.e., the indices
!>          indicating the nonzero elements in Z. The i-th eigenvector
!>          is nonzero only in elements ISUPPZ( 2*i-1 ) through
!>          ISUPPZ( 2*i ). This is an output of DSTEMR (tridiagonal
!>          matrix). The support of the eigenvectors of A is typically
!>          1:N because of the orthogonal transformations applied by DORMTR.
!>          Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1
!> \endverbatim
!>
!> \param[out] WORK
!> \verbatim
!>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
!>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
!> \endverbatim
!>
!> \param[in] LWORK
!> \verbatim
!>          LWORK is INTEGER
!>          The dimension of the array WORK.  LWORK >= max(1,26*N).
!>          For optimal efficiency, LWORK >= (NB+6)*N,
!>          where NB is the max of the blocksize for DSYTRD and DORMTR
!>          returned by ILAENV.
!>
!>          If LWORK = -1, then a workspace query is assumed; the routine
!>          only calculates the optimal size of the WORK array, returns
!>          this value as the first entry of the WORK array, and no error
!>          message related to LWORK is issued by XERBLA.
!> \endverbatim
!>
!> \param[out] IWORK
!> \verbatim
!>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
!>          On exit, if INFO = 0, IWORK(1) returns the optimal LWORK.
!> \endverbatim
!>
!> \param[in] LIWORK
!> \verbatim
!>          LIWORK is INTEGER
!>          The dimension of the array IWORK.  LIWORK >= max(1,10*N).
!>
!>          If LIWORK = -1, then a workspace query is assumed; the
!>          routine only calculates the optimal size of the IWORK array,
!>          returns this value as the first entry of the IWORK array, and
!>          no error message related to LIWORK is issued by XERBLA.
!> \endverbatim
!>
!> \param[out] INFO
!> \verbatim
!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!>          > 0:  Internal error
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date June 2016
!
!> \ingroup doubleSYeigen
!
!> \par Contributors:
!  ==================
!>
!>     Inderjit Dhillon, IBM Almaden, USA \n
!>     Osni Marques, LBNL/NERSC, USA \n
!>     Ken Stanley, Computer Science Division, University of
!>       California at Berkeley, USA \n
!>     Jason Riedy, Computer Science Division, University of
!>       California at Berkeley, USA \n
!>
!  =====================================================================
      SUBROUTINE DSYEVR( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU, &
                         ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK, LWORK, &
                         IWORK, LIWORK, INFO )
!
!  -- LAPACK driver routine (version 3.7.1) --
!  -- LAPACK is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     June 2016
!
!     .. Scalar Arguments ..
      CHARACTER          JOBZ, RANGE, UPLO
      INTEGER            IL, INFO, IU, LDA, LDZ, LIWORK, LWORK, M, N
      DOUBLE PRECISION   ABSTOL, VL, VU
!     ..
!     .. Array Arguments ..
      INTEGER            ISUPPZ( * ), IWORK( * )
      DOUBLE PRECISION   A( LDA, * ), W( * ), WORK( * ), Z( LDZ, * )
!     ..
!
! =====================================================================
!
!     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE, TWO
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0 )
!     ..
!     .. Local Scalars ..
      LOGICAL            ALLEIG, INDEIG, LOWER, LQUERY, VALEIG, WANTZ, &
                         TRYRAC
      CHARACTER          ORDER
      INTEGER            I, IEEEOK, IINFO, IMAX, INDD, INDDD, INDE, &
                         INDEE, INDIBL, INDIFL, INDISP, INDIWO, INDTAU, &
                         INDWK, INDWKN, ISCALE, J, JJ, LIWMIN, &
                         LLWORK, LLWRKN, LWKOPT, LWMIN, NB, NSPLIT
      DOUBLE PRECISION   ABSTLL, ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, &
                         SIGMA, SMLNUM, TMP1, VLL, VUU
!     ..
!     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            ILAENV
      DOUBLE PRECISION   DLAMCH, DLANSY
      EXTERNAL           LSAME, ILAENV, DLAMCH, DLANSY
!     ..
!     .. External Subroutines ..
      EXTERNAL           DCOPY, DORMTR, DSCAL, DSTEBZ, DSTEMR, DSTEIN, &
                         DSTERF, DSWAP, DSYTRD, XERBLA
!     ..
!     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN, SQRT
!     ..
!     .. Executable Statements ..
!
!     Test the input parameters.
!
      IEEEOK = ILAENV( 10, 'DSYEVR', 'N', 1, 2, 3, 4 )
!
      LOWER = LSAME( UPLO, 'L' )
      WANTZ = LSAME( JOBZ, 'V' )
      ALLEIG = LSAME( RANGE, 'A' )
      VALEIG = LSAME( RANGE, 'V' )
      INDEIG = LSAME( RANGE, 'I' )
!
      LQUERY = ( ( LWORK.EQ.-1 ) .OR. ( LIWORK.EQ.-1 ) )
!
      LWMIN = MAX( 1, 26*N )
      LIWMIN = MAX( 1, 10*N )
!
      INFO = 0
      IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
         INFO = -1
      ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
         INFO = -2
      ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
         INFO = -3
      ELSE IF( N.LT.0 ) THEN
         INFO = -4
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -6
      ELSE
         IF( VALEIG ) THEN
            IF( N.GT.0 .AND. VU.LE.VL ) &
               INFO = -8
         ELSE IF( INDEIG ) THEN
            IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
               INFO = -9
            ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
               INFO = -10
            END IF
         END IF
      END IF
      IF( INFO.EQ.0 ) THEN
         IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
            INFO = -15
         ELSE IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
            INFO = -18
         ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
            INFO = -20
         END IF
      END IF
!
      IF( INFO.EQ.0 ) THEN
         NB = ILAENV( 1, 'DSYTRD', UPLO, N, -1, -1, -1 )
         NB = MAX( NB, ILAENV( 1, 'DORMTR', UPLO, N, -1, -1, -1 ) )
         LWKOPT = MAX( ( NB+1 )*N, LWMIN )
         WORK( 1 ) = LWKOPT
         IWORK( 1 ) = LIWMIN
      END IF
!
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DSYEVR', -INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         RETURN
      END IF
!
!     Quick return if possible
!
      M = 0
      IF( N.EQ.0 ) THEN
         WORK( 1 ) = 1
         RETURN
      END IF
!
      IF( N.EQ.1 ) THEN
         WORK( 1 ) = 7
         IF( ALLEIG .OR. INDEIG ) THEN
            M = 1
            W( 1 ) = A( 1, 1 )
         ELSE
            IF( VL.LT.A( 1, 1 ) .AND. VU.GE.A( 1, 1 ) ) THEN
               M = 1
               W( 1 ) = A( 1, 1 )
            END IF
         END IF
         IF( WANTZ ) THEN
            Z( 1, 1 ) = ONE
            ISUPPZ( 1 ) = 1
            ISUPPZ( 2 ) = 1
         END IF
         RETURN
      END IF
!
!     Get machine constants.
!
      SAFMIN = DLAMCH( 'Safe minimum' )
      EPS = DLAMCH( 'Precision' )
      SMLNUM = SAFMIN / EPS
      BIGNUM = ONE / SMLNUM
      RMIN = SQRT( SMLNUM )
      RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
!
!     Scale matrix to allowable range, if necessary.
!
      ISCALE = 0
      ABSTLL = ABSTOL
      IF (VALEIG) THEN
         VLL = VL
         VUU = VU
      END IF
      ANRM = DLANSY( 'M', UPLO, N, A, LDA, WORK )
      IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
         ISCALE = 1
         SIGMA = RMIN / ANRM
      ELSE IF( ANRM.GT.RMAX ) THEN
         ISCALE = 1
         SIGMA = RMAX / ANRM
      END IF
      IF( ISCALE.EQ.1 ) THEN
         IF( LOWER ) THEN
            DO 10 J = 1, N
               CALL DSCAL( N-J+1, SIGMA, A( J, J ), 1 )
   10       CONTINUE
         ELSE
            DO 20 J = 1, N
               CALL DSCAL( J, SIGMA, A( 1, J ), 1 )
   20       CONTINUE
         END IF
         IF( ABSTOL.GT.0 ) &
            ABSTLL = ABSTOL*SIGMA
         IF( VALEIG ) THEN
            VLL = VL*SIGMA
            VUU = VU*SIGMA
         END IF
      END IF

!     Initialize indices into workspaces.  Note: The IWORK indices are
!     used only if DSTERF or DSTEMR fail.

!     WORK(INDTAU:INDTAU+N-1) stores the scalar factors of the
!     elementary reflectors used in DSYTRD.
      INDTAU = 1
!     WORK(INDD:INDD+N-1) stores the tridiagonal's diagonal entries.
      INDD = INDTAU + N
!     WORK(INDE:INDE+N-1) stores the off-diagonal entries of the
!     tridiagonal matrix from DSYTRD.
      INDE = INDD + N
!     WORK(INDDD:INDDD+N-1) is a copy of the diagonal entries over
!     -written by DSTEMR (the DSTERF path copies the diagonal to W).
      INDDD = INDE + N
!     WORK(INDEE:INDEE+N-1) is a copy of the off-diagonal entries over
!     -written while computing the eigenvalues in DSTERF and DSTEMR.
      INDEE = INDDD + N
!     INDWK is the starting offset of the left-over workspace, and
!     LLWORK is the remaining workspace size.
      INDWK = INDEE + N
      LLWORK = LWORK - INDWK + 1

!     IWORK(INDIBL:INDIBL+M-1) corresponds to IBLOCK in DSTEBZ and
!     stores the block indices of each of the M<=N eigenvalues.
      INDIBL = 1
!     IWORK(INDISP:INDISP+NSPLIT-1) corresponds to ISPLIT in DSTEBZ and
!     stores the starting and finishing indices of each block.
      INDISP = INDIBL + N
!     IWORK(INDIFL:INDIFL+N-1) stores the indices of eigenvectors
!     that corresponding to eigenvectors that fail to converge in
!     DSTEIN.  This information is discarded; if any fail, the driver
!     returns INFO > 0.
      INDIFL = INDISP + N
!     INDIWO is the offset of the remaining integer workspace.
      INDIWO = INDIFL + N

!
!     Call DSYTRD to reduce symmetric matrix to tridiagonal form.
!
      CALL DSYTRD( UPLO, N, A, LDA, WORK( INDD ), WORK( INDE ), &
                   WORK( INDTAU ), WORK( INDWK ), LLWORK, IINFO )
!
!     If all eigenvalues are desired
!     then call DSTERF or DSTEMR and DORMTR.
!
      IF( ( ALLEIG .OR. ( INDEIG .AND. IL.EQ.1 .AND. IU.EQ.N ) ) .AND. &
          IEEEOK.EQ.1 ) THEN
         IF( .NOT.WANTZ ) THEN
            CALL DCOPY( N, WORK( INDD ), 1, W, 1 )
            CALL DCOPY( N-1, WORK( INDE ), 1, WORK( INDEE ), 1 )
            CALL DSTERF( N, W, WORK( INDEE ), INFO )
         ELSE
            CALL DCOPY( N-1, WORK( INDE ), 1, WORK( INDEE ), 1 )
            CALL DCOPY( N, WORK( INDD ), 1, WORK( INDDD ), 1 )
!
            IF (ABSTOL .LE. TWO*N*EPS) THEN
               TRYRAC = .TRUE.
            ELSE
               TRYRAC = .FALSE.
            END IF
            CALL DSTEMR( JOBZ, 'A', N, WORK( INDDD ), WORK( INDEE ), &
                         VL, VU, IL, IU, M, W, Z, LDZ, N, ISUPPZ, &
                         TRYRAC, WORK( INDWK ), LWORK, IWORK, LIWORK, &
                         INFO )
!
!
!
!        Apply orthogonal matrix used in reduction to tridiagonal
!        form to eigenvectors returned by DSTEMR.
!
            IF( WANTZ .AND. INFO.EQ.0 ) THEN
               INDWKN = INDE
               LLWRKN = LWORK - INDWKN + 1
               CALL DORMTR( 'L', UPLO, 'N', N, M, A, LDA, &
                            WORK( INDTAU ), Z, LDZ, WORK( INDWKN ), &
                            LLWRKN, IINFO )
            END IF
         END IF
!
!
         IF( INFO.EQ.0 ) THEN
!           Everything worked.  Skip DSTEBZ/DSTEIN.  IWORK(:) are
!           undefined.
            M = N
            GO TO 30
         END IF
         INFO = 0
      END IF
!
!     Otherwise, call DSTEBZ and, if eigenvectors are desired, DSTEIN.
!     Also call DSTEBZ and DSTEIN if DSTEMR fails.
!
      IF( WANTZ ) THEN
         ORDER = 'B'
      ELSE
         ORDER = 'E'
      END IF

      CALL DSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTLL, &
                   WORK( INDD ), WORK( INDE ), M, NSPLIT, W, &
                   IWORK( INDIBL ), IWORK( INDISP ), WORK( INDWK ), &
                   IWORK( INDIWO ), INFO )
!
      IF( WANTZ ) THEN
         CALL DSTEIN( N, WORK( INDD ), WORK( INDE ), M, W, &
                      IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ, &
                      WORK( INDWK ), IWORK( INDIWO ), IWORK( INDIFL ), &
                      INFO )
!
!        Apply orthogonal matrix used in reduction to tridiagonal
!        form to eigenvectors returned by DSTEIN.
!
         INDWKN = INDE
         LLWRKN = LWORK - INDWKN + 1
         CALL DORMTR( 'L', UPLO, 'N', N, M, A, LDA, WORK( INDTAU ), Z, &
                      LDZ, WORK( INDWKN ), LLWRKN, IINFO )
      END IF
!
!     If matrix was scaled, then rescale eigenvalues appropriately.
!
!  Jump here if DSTEMR/DSTEIN succeeded.
   30 CONTINUE
      IF( ISCALE.EQ.1 ) THEN
         IF( INFO.EQ.0 ) THEN
            IMAX = M
         ELSE
            IMAX = INFO - 1
         END IF
         CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
      END IF
!
!     If eigenvalues are not in order, then sort them, along with
!     eigenvectors.  Note: We do not sort the IFAIL portion of IWORK.
!     It may not be initialized (if DSTEMR/DSTEIN succeeded), and we do
!     not return this detailed information to the user.
!
      IF( WANTZ ) THEN
         DO 50 J = 1, M - 1
            I = 0
            TMP1 = W( J )
            DO 40 JJ = J + 1, M
               IF( W( JJ ).LT.TMP1 ) THEN
                  I = JJ
                  TMP1 = W( JJ )
               END IF
   40       CONTINUE
!
            IF( I.NE.0 ) THEN
               W( I ) = W( J )
               W( J ) = TMP1
               CALL DSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
            END IF
   50    CONTINUE
      END IF
!
!     Set WORK(1) to optimal workspace size.
!
      WORK( 1 ) = LWKOPT
      IWORK( 1 ) = LIWMIN
!
      RETURN
!
!     End of DSYEVR
!
      END