dsyevd.F90 Source File


Source Code

#include "ESMF_LapackBlas.inc"
!> \brief <b> DSYEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for SY matrices</b>
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!> \htmlonly
!> Download DSYEVD + dependencies
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsyevd.f">
!> [TGZ]</a>
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsyevd.f">
!> [ZIP]</a>
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsyevd.f">
!> [TXT]</a>
!> \endhtmlonly
!
!  Definition:
!  ===========
!
!       SUBROUTINE DSYEVD( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, IWORK,
!                          LIWORK, INFO )
!
!       .. Scalar Arguments ..
!       CHARACTER          JOBZ, UPLO
!       INTEGER            INFO, LDA, LIWORK, LWORK, N
!       ..
!       .. Array Arguments ..
!       INTEGER            IWORK( * )
!       DOUBLE PRECISION   A( LDA, * ), W( * ), WORK( * )
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> DSYEVD computes all eigenvalues and, optionally, eigenvectors of a
!> real symmetric matrix A. If eigenvectors are desired, it uses a
!> divide and conquer algorithm.
!>
!> The divide and conquer algorithm makes very mild assumptions about
!> floating point arithmetic. It will work on machines with a guard
!> digit in add/subtract, or on those binary machines without guard
!> digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
!> Cray-2. It could conceivably fail on hexadecimal or decimal machines
!> without guard digits, but we know of none.
!>
!> Because of large use of BLAS of level 3, DSYEVD needs N**2 more
!> workspace than DSYEVX.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] JOBZ
!> \verbatim
!>          JOBZ is CHARACTER*1
!>          = 'N':  Compute eigenvalues only;
!>          = 'V':  Compute eigenvalues and eigenvectors.
!> \endverbatim
!>
!> \param[in] UPLO
!> \verbatim
!>          UPLO is CHARACTER*1
!>          = 'U':  Upper triangle of A is stored;
!>          = 'L':  Lower triangle of A is stored.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>          The order of the matrix A.  N >= 0.
!> \endverbatim
!>
!> \param[in,out] A
!> \verbatim
!>          A is DOUBLE PRECISION array, dimension (LDA, N)
!>          On entry, the symmetric matrix A.  If UPLO = 'U', the
!>          leading N-by-N upper triangular part of A contains the
!>          upper triangular part of the matrix A.  If UPLO = 'L',
!>          the leading N-by-N lower triangular part of A contains
!>          the lower triangular part of the matrix A.
!>          On exit, if JOBZ = 'V', then if INFO = 0, A contains the
!>          orthonormal eigenvectors of the matrix A.
!>          If JOBZ = 'N', then on exit the lower triangle (if UPLO='L')
!>          or the upper triangle (if UPLO='U') of A, including the
!>          diagonal, is destroyed.
!> \endverbatim
!>
!> \param[in] LDA
!> \verbatim
!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,N).
!> \endverbatim
!>
!> \param[out] W
!> \verbatim
!>          W is DOUBLE PRECISION array, dimension (N)
!>          If INFO = 0, the eigenvalues in ascending order.
!> \endverbatim
!>
!> \param[out] WORK
!> \verbatim
!>          WORK is DOUBLE PRECISION array,
!>                                         dimension (LWORK)
!>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
!> \endverbatim
!>
!> \param[in] LWORK
!> \verbatim
!>          LWORK is INTEGER
!>          The dimension of the array WORK.
!>          If N <= 1,               LWORK must be at least 1.
!>          If JOBZ = 'N' and N > 1, LWORK must be at least 2*N+1.
!>          If JOBZ = 'V' and N > 1, LWORK must be at least
!>                                                1 + 6*N + 2*N**2.
!>
!>          If LWORK = -1, then a workspace query is assumed; the routine
!>          only calculates the optimal sizes of the WORK and IWORK
!>          arrays, returns these values as the first entries of the WORK
!>          and IWORK arrays, and no error message related to LWORK or
!>          LIWORK is issued by XERBLA.
!> \endverbatim
!>
!> \param[out] IWORK
!> \verbatim
!>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
!>          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
!> \endverbatim
!>
!> \param[in] LIWORK
!> \verbatim
!>          LIWORK is INTEGER
!>          The dimension of the array IWORK.
!>          If N <= 1,                LIWORK must be at least 1.
!>          If JOBZ  = 'N' and N > 1, LIWORK must be at least 1.
!>          If JOBZ  = 'V' and N > 1, LIWORK must be at least 3 + 5*N.
!>
!>          If LIWORK = -1, then a workspace query is assumed; the
!>          routine only calculates the optimal sizes of the WORK and
!>          IWORK arrays, returns these values as the first entries of
!>          the WORK and IWORK arrays, and no error message related to
!>          LWORK or LIWORK is issued by XERBLA.
!> \endverbatim
!>
!> \param[out] INFO
!> \verbatim
!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!>          > 0:  if INFO = i and JOBZ = 'N', then the algorithm failed
!>                to converge; i off-diagonal elements of an intermediate
!>                tridiagonal form did not converge to zero;
!>                if INFO = i and JOBZ = 'V', then the algorithm failed
!>                to compute an eigenvalue while working on the submatrix
!>                lying in rows and columns INFO/(N+1) through
!>                mod(INFO,N+1).
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup doubleSYeigen
!
!> \par Contributors:
!  ==================
!>
!> Jeff Rutter, Computer Science Division, University of California
!> at Berkeley, USA \n
!>  Modified by Francoise Tisseur, University of Tennessee \n
!>  Modified description of INFO. Sven, 16 Feb 05. \n


!>
!  =====================================================================
      SUBROUTINE DSYEVD( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, IWORK, &
                         LIWORK, INFO )
!
!  -- LAPACK driver routine (version 3.7.0) --
!  -- LAPACK is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
      CHARACTER          JOBZ, UPLO
      INTEGER            INFO, LDA, LIWORK, LWORK, N
!     ..
!     .. Array Arguments ..
      INTEGER            IWORK( * )
      DOUBLE PRECISION   A( LDA, * ), W( * ), WORK( * )
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
!     ..
!     .. Local Scalars ..
!
      LOGICAL            LOWER, LQUERY, WANTZ
      INTEGER            IINFO, INDE, INDTAU, INDWK2, INDWRK, ISCALE, &
                         LIOPT, LIWMIN, LLWORK, LLWRK2, LOPT, LWMIN
      DOUBLE PRECISION   ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA, &
                         SMLNUM
!     ..
!     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            ILAENV
      DOUBLE PRECISION   DLAMCH, DLANSY
      EXTERNAL           LSAME, DLAMCH, DLANSY, ILAENV
!     ..
!     .. External Subroutines ..
      EXTERNAL           DLACPY, DLASCL, DORMTR, DSCAL, DSTEDC, DSTERF, &
                         DSYTRD, XERBLA
!     ..
!     .. Intrinsic Functions ..
      INTRINSIC          MAX, SQRT
!     ..
!     .. Executable Statements ..
!
!     Test the input parameters.
!
      WANTZ = LSAME( JOBZ, 'V' )
      LOWER = LSAME( UPLO, 'L' )
      LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
!
      INFO = 0
      IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
         INFO = -1
      ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
         INFO = -2
      ELSE IF( N.LT.0 ) THEN
         INFO = -3
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -5
      END IF
!
      IF( INFO.EQ.0 ) THEN
         IF( N.LE.1 ) THEN
            LIWMIN = 1
            LWMIN = 1
            LOPT = LWMIN
            LIOPT = LIWMIN
         ELSE
            IF( WANTZ ) THEN
               LIWMIN = 3 + 5*N
               LWMIN = 1 + 6*N + 2*N**2
            ELSE
               LIWMIN = 1
               LWMIN = 2*N + 1
            END IF
            LOPT = MAX( LWMIN, 2*N + &
                        ILAENV( 1, 'DSYTRD', UPLO, N, -1, -1, -1 ) )
            LIOPT = LIWMIN
         END IF
         WORK( 1 ) = LOPT
         IWORK( 1 ) = LIOPT
!
         IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
            INFO = -8
         ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
            INFO = -10
         END IF
      END IF
!
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DSYEVD', -INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         RETURN
      END IF
!
!     Quick return if possible
!
      IF( N.EQ.0 ) &
         RETURN
!
      IF( N.EQ.1 ) THEN
         W( 1 ) = A( 1, 1 )
         IF( WANTZ ) &
            A( 1, 1 ) = ONE
         RETURN
      END IF
!
!     Get machine constants.
!
      SAFMIN = DLAMCH( 'Safe minimum' )
      EPS = DLAMCH( 'Precision' )
      SMLNUM = SAFMIN / EPS
      BIGNUM = ONE / SMLNUM
      RMIN = SQRT( SMLNUM )
      RMAX = SQRT( BIGNUM )
!
!     Scale matrix to allowable range, if necessary.
!
      ANRM = DLANSY( 'M', UPLO, N, A, LDA, WORK )
      ISCALE = 0
      IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
         ISCALE = 1
         SIGMA = RMIN / ANRM
      ELSE IF( ANRM.GT.RMAX ) THEN
         ISCALE = 1
         SIGMA = RMAX / ANRM
      END IF
      IF( ISCALE.EQ.1 ) &
         CALL DLASCL( UPLO, 0, 0, ONE, SIGMA, N, N, A, LDA, INFO )
!
!     Call DSYTRD to reduce symmetric matrix to tridiagonal form.
!
      INDE = 1
      INDTAU = INDE + N
      INDWRK = INDTAU + N
      LLWORK = LWORK - INDWRK + 1
      INDWK2 = INDWRK + N*N
      LLWRK2 = LWORK - INDWK2 + 1
!
      CALL DSYTRD( UPLO, N, A, LDA, W, WORK( INDE ), WORK( INDTAU ), &
                   WORK( INDWRK ), LLWORK, IINFO )
!
!     For eigenvalues only, call DSTERF.  For eigenvectors, first call
!     DSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the
!     tridiagonal matrix, then call DORMTR to multiply it by the
!     Householder transformations stored in A.
!
      IF( .NOT.WANTZ ) THEN
         CALL DSTERF( N, W, WORK( INDE ), INFO )
      ELSE
         CALL DSTEDC( 'I', N, W, WORK( INDE ), WORK( INDWRK ), N, &
                      WORK( INDWK2 ), LLWRK2, IWORK, LIWORK, INFO )
         CALL DORMTR( 'L', UPLO, 'N', N, N, A, LDA, WORK( INDTAU ), &
                      WORK( INDWRK ), N, WORK( INDWK2 ), LLWRK2, IINFO )
         CALL DLACPY( 'A', N, N, WORK( INDWRK ), N, A, LDA )
      END IF
!
!     If matrix was scaled, then rescale eigenvalues appropriately.
!
      IF( ISCALE.EQ.1 ) &
         CALL DSCAL( N, ONE / SIGMA, W, 1 )
!
      WORK( 1 ) = LOPT
      IWORK( 1 ) = LIOPT
!
      RETURN
!
!     End of DSYEVD
!
      END