dsteqr.F90 Source File


Source Code

#include "ESMF_LapackBlas.inc"
!> \brief \b DSTEQR
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!> \htmlonly
!> Download DSTEQR + dependencies
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsteqr.f">
!> [TGZ]</a>
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsteqr.f">
!> [ZIP]</a>
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsteqr.f">
!> [TXT]</a>
!> \endhtmlonly
!
!  Definition:
!  ===========
!
!       SUBROUTINE DSTEQR( COMPZ, N, D, E, Z, LDZ, WORK, INFO )
!
!       .. Scalar Arguments ..
!       CHARACTER          COMPZ
!       INTEGER            INFO, LDZ, N
!       ..
!       .. Array Arguments ..
!       DOUBLE PRECISION   D( * ), E( * ), WORK( * ), Z( LDZ, * )
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> DSTEQR computes all eigenvalues and, optionally, eigenvectors of a
!> symmetric tridiagonal matrix using the implicit QL or QR method.
!> The eigenvectors of a full or band symmetric matrix can also be found
!> if DSYTRD or DSPTRD or DSBTRD has been used to reduce this matrix to
!> tridiagonal form.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] COMPZ
!> \verbatim
!>          COMPZ is CHARACTER*1
!>          = 'N':  Compute eigenvalues only.
!>          = 'V':  Compute eigenvalues and eigenvectors of the original
!>                  symmetric matrix.  On entry, Z must contain the
!>                  orthogonal matrix used to reduce the original matrix
!>                  to tridiagonal form.
!>          = 'I':  Compute eigenvalues and eigenvectors of the
!>                  tridiagonal matrix.  Z is initialized to the identity
!>                  matrix.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>          The order of the matrix.  N >= 0.
!> \endverbatim
!>
!> \param[in,out] D
!> \verbatim
!>          D is DOUBLE PRECISION array, dimension (N)
!>          On entry, the diagonal elements of the tridiagonal matrix.
!>          On exit, if INFO = 0, the eigenvalues in ascending order.
!> \endverbatim
!>
!> \param[in,out] E
!> \verbatim
!>          E is DOUBLE PRECISION array, dimension (N-1)
!>          On entry, the (n-1) subdiagonal elements of the tridiagonal
!>          matrix.
!>          On exit, E has been destroyed.
!> \endverbatim
!>
!> \param[in,out] Z
!> \verbatim
!>          Z is DOUBLE PRECISION array, dimension (LDZ, N)
!>          On entry, if  COMPZ = 'V', then Z contains the orthogonal
!>          matrix used in the reduction to tridiagonal form.
!>          On exit, if INFO = 0, then if  COMPZ = 'V', Z contains the
!>          orthonormal eigenvectors of the original symmetric matrix,
!>          and if COMPZ = 'I', Z contains the orthonormal eigenvectors
!>          of the symmetric tridiagonal matrix.
!>          If COMPZ = 'N', then Z is not referenced.
!> \endverbatim
!>
!> \param[in] LDZ
!> \verbatim
!>          LDZ is INTEGER
!>          The leading dimension of the array Z.  LDZ >= 1, and if
!>          eigenvectors are desired, then  LDZ >= max(1,N).
!> \endverbatim
!>
!> \param[out] WORK
!> \verbatim
!>          WORK is DOUBLE PRECISION array, dimension (max(1,2*N-2))
!>          If COMPZ = 'N', then WORK is not referenced.
!> \endverbatim
!>
!> \param[out] INFO
!> \verbatim
!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!>          > 0:  the algorithm has failed to find all the eigenvalues in
!>                a total of 30*N iterations; if INFO = i, then i
!>                elements of E have not converged to zero; on exit, D
!>                and E contain the elements of a symmetric tridiagonal
!>                matrix which is orthogonally similar to the original
!>                matrix.
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup auxOTHERcomputational
!
!  =====================================================================
      SUBROUTINE DSTEQR( COMPZ, N, D, E, Z, LDZ, WORK, INFO )
!
!  -- LAPACK computational routine (version 3.7.0) --
!  -- LAPACK is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
      CHARACTER          COMPZ
      INTEGER            INFO, LDZ, N
!     ..
!     .. Array Arguments ..
      DOUBLE PRECISION   D( * ), E( * ), WORK( * ), Z( LDZ, * )
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE, TWO, THREE
      PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0, &
                         THREE = 3.0D0 )
      INTEGER            MAXIT
      PARAMETER          ( MAXIT = 30 )
!     ..
!     .. Local Scalars ..
      INTEGER            I, ICOMPZ, II, ISCALE, J, JTOT, K, L, L1, LEND, &
                         LENDM1, LENDP1, LENDSV, LM1, LSV, M, MM, MM1, &
                         NM1, NMAXIT
      DOUBLE PRECISION   ANORM, B, C, EPS, EPS2, F, G, P, R, RT1, RT2, &
                         S, SAFMAX, SAFMIN, SSFMAX, SSFMIN, TST
!     ..
!     .. External Functions ..
      LOGICAL            LSAME
      DOUBLE PRECISION   DLAMCH, DLANST, DLAPY2
      EXTERNAL           LSAME, DLAMCH, DLANST, DLAPY2
!     ..
!     .. External Subroutines ..
      EXTERNAL           DLAE2, DLAEV2, DLARTG, DLASCL, DLASET, DLASR, &
                         DLASRT, DSWAP, XERBLA
!     ..
!     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX, SIGN, SQRT
!     ..
!     .. Executable Statements ..
!
!     Test the input parameters.
!
      INFO = 0
!
      IF( LSAME( COMPZ, 'N' ) ) THEN
         ICOMPZ = 0
      ELSE IF( LSAME( COMPZ, 'V' ) ) THEN
         ICOMPZ = 1
      ELSE IF( LSAME( COMPZ, 'I' ) ) THEN
         ICOMPZ = 2
      ELSE
         ICOMPZ = -1
      END IF
      IF( ICOMPZ.LT.0 ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( ( LDZ.LT.1 ) .OR. ( ICOMPZ.GT.0 .AND. LDZ.LT.MAX( 1, &
               N ) ) ) THEN
         INFO = -6
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DSTEQR', -INFO )
         RETURN
      END IF
!
!     Quick return if possible
!
      IF( N.EQ.0 ) &
         RETURN
!
      IF( N.EQ.1 ) THEN
         IF( ICOMPZ.EQ.2 ) &
            Z( 1, 1 ) = ONE
         RETURN
      END IF
!
!     Determine the unit roundoff and over/underflow thresholds.
!
      EPS = DLAMCH( 'E' )
      EPS2 = EPS**2
      SAFMIN = DLAMCH( 'S' )
      SAFMAX = ONE / SAFMIN
      SSFMAX = SQRT( SAFMAX ) / THREE
      SSFMIN = SQRT( SAFMIN ) / EPS2
!
!     Compute the eigenvalues and eigenvectors of the tridiagonal
!     matrix.
!
      IF( ICOMPZ.EQ.2 ) &
         CALL DLASET( 'Full', N, N, ZERO, ONE, Z, LDZ )
!
      NMAXIT = N*MAXIT
      JTOT = 0
!
!     Determine where the matrix splits and choose QL or QR iteration
!     for each block, according to whether top or bottom diagonal
!     element is smaller.
!
      L1 = 1
      NM1 = N - 1
!
   10 CONTINUE
      IF( L1.GT.N ) &
         GO TO 160
      IF( L1.GT.1 ) &
         E( L1-1 ) = ZERO
      IF( L1.LE.NM1 ) THEN
         DO 20 M = L1, NM1
            TST = ABS( E( M ) )
            IF( TST.EQ.ZERO ) &
               GO TO 30
            IF( TST.LE.( SQRT( ABS( D( M ) ) )*SQRT( ABS( D( M+ &
                1 ) ) ) )*EPS ) THEN
               E( M ) = ZERO
               GO TO 30
            END IF
   20    CONTINUE
      END IF
      M = N
!
   30 CONTINUE
      L = L1
      LSV = L
      LEND = M
      LENDSV = LEND
      L1 = M + 1
      IF( LEND.EQ.L ) &
         GO TO 10
!
!     Scale submatrix in rows and columns L to LEND
!
      ANORM = DLANST( 'M', LEND-L+1, D( L ), E( L ) )
      ISCALE = 0
      IF( ANORM.EQ.ZERO ) &
         GO TO 10
      IF( ANORM.GT.SSFMAX ) THEN
         ISCALE = 1
         CALL DLASCL( 'G', 0, 0, ANORM, SSFMAX, LEND-L+1, 1, D( L ), N, &
                      INFO )
         CALL DLASCL( 'G', 0, 0, ANORM, SSFMAX, LEND-L, 1, E( L ), N, &
                      INFO )
      ELSE IF( ANORM.LT.SSFMIN ) THEN
         ISCALE = 2
         CALL DLASCL( 'G', 0, 0, ANORM, SSFMIN, LEND-L+1, 1, D( L ), N, &
                      INFO )
         CALL DLASCL( 'G', 0, 0, ANORM, SSFMIN, LEND-L, 1, E( L ), N, &
                      INFO )
      END IF
!
!     Choose between QL and QR iteration
!
      IF( ABS( D( LEND ) ).LT.ABS( D( L ) ) ) THEN
         LEND = LSV
         L = LENDSV
      END IF
!
      IF( LEND.GT.L ) THEN
!
!        QL Iteration
!
!        Look for small subdiagonal element.
!
   40    CONTINUE
         IF( L.NE.LEND ) THEN
            LENDM1 = LEND - 1
            DO 50 M = L, LENDM1
               TST = ABS( E( M ) )**2
               IF( TST.LE.( EPS2*ABS( D( M ) ) )*ABS( D( M+1 ) )+ &
                   SAFMIN )GO TO 60
   50       CONTINUE
         END IF
!
         M = LEND
!
   60    CONTINUE
         IF( M.LT.LEND ) &
            E( M ) = ZERO
         P = D( L )
         IF( M.EQ.L ) &
            GO TO 80
!
!        If remaining matrix is 2-by-2, use DLAE2 or SLAEV2
!        to compute its eigensystem.
!
         IF( M.EQ.L+1 ) THEN
            IF( ICOMPZ.GT.0 ) THEN
               CALL DLAEV2( D( L ), E( L ), D( L+1 ), RT1, RT2, C, S )
               WORK( L ) = C
               WORK( N-1+L ) = S
               CALL DLASR( 'R', 'V', 'B', N, 2, WORK( L ), &
                           WORK( N-1+L ), Z( 1, L ), LDZ )
            ELSE
               CALL DLAE2( D( L ), E( L ), D( L+1 ), RT1, RT2 )
            END IF
            D( L ) = RT1
            D( L+1 ) = RT2
            E( L ) = ZERO
            L = L + 2
            IF( L.LE.LEND ) &
               GO TO 40
            GO TO 140
         END IF
!
         IF( JTOT.EQ.NMAXIT ) &
            GO TO 140
         JTOT = JTOT + 1
!
!        Form shift.
!
         G = ( D( L+1 )-P ) / ( TWO*E( L ) )
         R = DLAPY2( G, ONE )
         G = D( M ) - P + ( E( L ) / ( G+SIGN( R, G ) ) )
!
         S = ONE
         C = ONE
         P = ZERO
!
!        Inner loop
!
         MM1 = M - 1
         DO 70 I = MM1, L, -1
            F = S*E( I )
            B = C*E( I )
            CALL DLARTG( G, F, C, S, R )
            IF( I.NE.M-1 ) &
               E( I+1 ) = R
            G = D( I+1 ) - P
            R = ( D( I )-G )*S + TWO*C*B
            P = S*R
            D( I+1 ) = G + P
            G = C*R - B
!
!           If eigenvectors are desired, then save rotations.
!
            IF( ICOMPZ.GT.0 ) THEN
               WORK( I ) = C
               WORK( N-1+I ) = -S
            END IF
!
   70    CONTINUE
!
!        If eigenvectors are desired, then apply saved rotations.
!
         IF( ICOMPZ.GT.0 ) THEN
            MM = M - L + 1
            CALL DLASR( 'R', 'V', 'B', N, MM, WORK( L ), WORK( N-1+L ), &
                        Z( 1, L ), LDZ )
         END IF
!
         D( L ) = D( L ) - P
         E( L ) = G
         GO TO 40
!
!        Eigenvalue found.
!
   80    CONTINUE
         D( L ) = P
!
         L = L + 1
         IF( L.LE.LEND ) &
            GO TO 40
         GO TO 140
!
      ELSE
!
!        QR Iteration
!
!        Look for small superdiagonal element.
!
   90    CONTINUE
         IF( L.NE.LEND ) THEN
            LENDP1 = LEND + 1
            DO 100 M = L, LENDP1, -1
               TST = ABS( E( M-1 ) )**2
               IF( TST.LE.( EPS2*ABS( D( M ) ) )*ABS( D( M-1 ) )+ &
                   SAFMIN )GO TO 110
  100       CONTINUE
         END IF
!
         M = LEND
!
  110    CONTINUE
         IF( M.GT.LEND ) &
            E( M-1 ) = ZERO
         P = D( L )
         IF( M.EQ.L ) &
            GO TO 130
!
!        If remaining matrix is 2-by-2, use DLAE2 or SLAEV2
!        to compute its eigensystem.
!
         IF( M.EQ.L-1 ) THEN
            IF( ICOMPZ.GT.0 ) THEN
               CALL DLAEV2( D( L-1 ), E( L-1 ), D( L ), RT1, RT2, C, S )
               WORK( M ) = C
               WORK( N-1+M ) = S
               CALL DLASR( 'R', 'V', 'F', N, 2, WORK( M ), &
                           WORK( N-1+M ), Z( 1, L-1 ), LDZ )
            ELSE
               CALL DLAE2( D( L-1 ), E( L-1 ), D( L ), RT1, RT2 )
            END IF
            D( L-1 ) = RT1
            D( L ) = RT2
            E( L-1 ) = ZERO
            L = L - 2
            IF( L.GE.LEND ) &
               GO TO 90
            GO TO 140
         END IF
!
         IF( JTOT.EQ.NMAXIT ) &
            GO TO 140
         JTOT = JTOT + 1
!
!        Form shift.
!
         G = ( D( L-1 )-P ) / ( TWO*E( L-1 ) )
         R = DLAPY2( G, ONE )
         G = D( M ) - P + ( E( L-1 ) / ( G+SIGN( R, G ) ) )
!
         S = ONE
         C = ONE
         P = ZERO
!
!        Inner loop
!
         LM1 = L - 1
         DO 120 I = M, LM1
            F = S*E( I )
            B = C*E( I )
            CALL DLARTG( G, F, C, S, R )
            IF( I.NE.M ) &
               E( I-1 ) = R
            G = D( I ) - P
            R = ( D( I+1 )-G )*S + TWO*C*B
            P = S*R
            D( I ) = G + P
            G = C*R - B
!
!           If eigenvectors are desired, then save rotations.
!
            IF( ICOMPZ.GT.0 ) THEN
               WORK( I ) = C
               WORK( N-1+I ) = S
            END IF
!
  120    CONTINUE
!
!        If eigenvectors are desired, then apply saved rotations.
!
         IF( ICOMPZ.GT.0 ) THEN
            MM = L - M + 1
            CALL DLASR( 'R', 'V', 'F', N, MM, WORK( M ), WORK( N-1+M ), &
                        Z( 1, M ), LDZ )
         END IF
!
         D( L ) = D( L ) - P
         E( LM1 ) = G
         GO TO 90
!
!        Eigenvalue found.
!
  130    CONTINUE
         D( L ) = P
!
         L = L - 1
         IF( L.GE.LEND ) &
            GO TO 90
         GO TO 140
!
      END IF
!
!     Undo scaling if necessary
!
  140 CONTINUE
      IF( ISCALE.EQ.1 ) THEN
         CALL DLASCL( 'G', 0, 0, SSFMAX, ANORM, LENDSV-LSV+1, 1, &
                      D( LSV ), N, INFO )
         CALL DLASCL( 'G', 0, 0, SSFMAX, ANORM, LENDSV-LSV, 1, E( LSV ), &
                      N, INFO )
      ELSE IF( ISCALE.EQ.2 ) THEN
         CALL DLASCL( 'G', 0, 0, SSFMIN, ANORM, LENDSV-LSV+1, 1, &
                      D( LSV ), N, INFO )
         CALL DLASCL( 'G', 0, 0, SSFMIN, ANORM, LENDSV-LSV, 1, E( LSV ), &
                      N, INFO )
      END IF
!
!     Check for no convergence to an eigenvalue after a total
!     of N*MAXIT iterations.
!
      IF( JTOT.LT.NMAXIT ) &
         GO TO 10
      DO 150 I = 1, N - 1
         IF( E( I ).NE.ZERO ) &
            INFO = INFO + 1
  150 CONTINUE
      GO TO 190
!
!     Order eigenvalues and eigenvectors.
!
  160 CONTINUE
      IF( ICOMPZ.EQ.0 ) THEN
!
!        Use Quick Sort
!
         CALL DLASRT( 'I', N, D, INFO )
!
      ELSE
!
!        Use Selection Sort to minimize swaps of eigenvectors
!
         DO 180 II = 2, N
            I = II - 1
            K = I
            P = D( I )
            DO 170 J = II, N
               IF( D( J ).LT.P ) THEN
                  K = J
                  P = D( J )
               END IF
  170       CONTINUE
            IF( K.NE.I ) THEN
               D( K ) = D( I )
               D( I ) = P
               CALL DSWAP( N, Z( 1, I ), 1, Z( 1, K ), 1 )
            END IF
  180    CONTINUE
      END IF
!
  190 CONTINUE
      RETURN
!
!     End of DSTEQR
!
      END