dormql.F90 Source File


Source Code

#include "ESMF_LapackBlas.inc"
!> \brief \b DORMQL
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!> \htmlonly
!> Download DORMQL + dependencies
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dormql.f">
!> [TGZ]</a>
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dormql.f">
!> [ZIP]</a>
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dormql.f">
!> [TXT]</a>
!> \endhtmlonly
!
!  Definition:
!  ===========
!
!       SUBROUTINE DORMQL( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
!                          WORK, LWORK, INFO )
!
!       .. Scalar Arguments ..
!       CHARACTER          SIDE, TRANS
!       INTEGER            INFO, K, LDA, LDC, LWORK, M, N
!       ..
!       .. Array Arguments ..
!       DOUBLE PRECISION   A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> DORMQL overwrites the general real M-by-N matrix C with
!>
!>                 SIDE = 'L'     SIDE = 'R'
!> TRANS = 'N':      Q * C          C * Q
!> TRANS = 'T':      Q**T * C       C * Q**T
!>
!> where Q is a real orthogonal matrix defined as the product of k
!> elementary reflectors
!>
!>       Q = H(k) . . . H(2) H(1)
!>
!> as returned by DGEQLF. Q is of order M if SIDE = 'L' and of order N
!> if SIDE = 'R'.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] SIDE
!> \verbatim
!>          SIDE is CHARACTER*1
!>          = 'L': apply Q or Q**T from the Left;
!>          = 'R': apply Q or Q**T from the Right.
!> \endverbatim
!>
!> \param[in] TRANS
!> \verbatim
!>          TRANS is CHARACTER*1
!>          = 'N':  No transpose, apply Q;
!>          = 'T':  Transpose, apply Q**T.
!> \endverbatim
!>
!> \param[in] M
!> \verbatim
!>          M is INTEGER
!>          The number of rows of the matrix C. M >= 0.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>          The number of columns of the matrix C. N >= 0.
!> \endverbatim
!>
!> \param[in] K
!> \verbatim
!>          K is INTEGER
!>          The number of elementary reflectors whose product defines
!>          the matrix Q.
!>          If SIDE = 'L', M >= K >= 0;
!>          if SIDE = 'R', N >= K >= 0.
!> \endverbatim
!>
!> \param[in] A
!> \verbatim
!>          A is DOUBLE PRECISION array, dimension (LDA,K)
!>          The i-th column must contain the vector which defines the
!>          elementary reflector H(i), for i = 1,2,...,k, as returned by
!>          DGEQLF in the last k columns of its array argument A.
!> \endverbatim
!>
!> \param[in] LDA
!> \verbatim
!>          LDA is INTEGER
!>          The leading dimension of the array A.
!>          If SIDE = 'L', LDA >= max(1,M);
!>          if SIDE = 'R', LDA >= max(1,N).
!> \endverbatim
!>
!> \param[in] TAU
!> \verbatim
!>          TAU is DOUBLE PRECISION array, dimension (K)
!>          TAU(i) must contain the scalar factor of the elementary
!>          reflector H(i), as returned by DGEQLF.
!> \endverbatim
!>
!> \param[in,out] C
!> \verbatim
!>          C is DOUBLE PRECISION array, dimension (LDC,N)
!>          On entry, the M-by-N matrix C.
!>          On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
!> \endverbatim
!>
!> \param[in] LDC
!> \verbatim
!>          LDC is INTEGER
!>          The leading dimension of the array C. LDC >= max(1,M).
!> \endverbatim
!>
!> \param[out] WORK
!> \verbatim
!>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
!>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
!> \endverbatim
!>
!> \param[in] LWORK
!> \verbatim
!>          LWORK is INTEGER
!>          The dimension of the array WORK.
!>          If SIDE = 'L', LWORK >= max(1,N);
!>          if SIDE = 'R', LWORK >= max(1,M).
!>          For good performance, LWORK should generally be larger.
!>
!>          If LWORK = -1, then a workspace query is assumed; the routine
!>          only calculates the optimal size of the WORK array, returns
!>          this value as the first entry of the WORK array, and no error
!>          message related to LWORK is issued by XERBLA.
!> \endverbatim
!>
!> \param[out] INFO
!> \verbatim
!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup doubleOTHERcomputational
!
!  =====================================================================
      SUBROUTINE DORMQL( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, &
                         WORK, LWORK, INFO )
!
!  -- LAPACK computational routine (version 3.7.0) --
!  -- LAPACK is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
      CHARACTER          SIDE, TRANS
      INTEGER            INFO, K, LDA, LDC, LWORK, M, N
!     ..
!     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
      INTEGER            NBMAX, LDT, TSIZE
      PARAMETER          ( NBMAX = 64, LDT = NBMAX+1, &
                           TSIZE = LDT*NBMAX )
!     ..
!     .. Local Scalars ..
      LOGICAL            LEFT, LQUERY, NOTRAN
      INTEGER            I, I1, I2, I3, IB, IINFO, IWT, LDWORK, LWKOPT, &
                         MI, NB, NBMIN, NI, NQ, NW
!     ..
!     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            ILAENV
      EXTERNAL           LSAME, ILAENV
!     ..
!     .. External Subroutines ..
      EXTERNAL           DLARFB, DLARFT, DORM2L, XERBLA
!     ..
!     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN
!     ..
!     .. Executable Statements ..
!
!     Test the input arguments
!
      INFO = 0
      LEFT = LSAME( SIDE, 'L' )
      NOTRAN = LSAME( TRANS, 'N' )
      LQUERY = ( LWORK.EQ.-1 )
!
!     NQ is the order of Q and NW is the minimum dimension of WORK
!
      IF( LEFT ) THEN
         NQ = M
         NW = MAX( 1, N )
      ELSE
         NQ = N
         NW = MAX( 1, M )
      END IF
      IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
         INFO = -1
      ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) ) THEN
         INFO = -2
      ELSE IF( M.LT.0 ) THEN
         INFO = -3
      ELSE IF( N.LT.0 ) THEN
         INFO = -4
      ELSE IF( K.LT.0 .OR. K.GT.NQ ) THEN
         INFO = -5
      ELSE IF( LDA.LT.MAX( 1, NQ ) ) THEN
         INFO = -7
      ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
         INFO = -10
      ELSE IF( LWORK.LT.NW .AND. .NOT.LQUERY ) THEN
         INFO = -12
      END IF
!
      IF( INFO.EQ.0 ) THEN
!
!        Compute the workspace requirements
!
         IF( M.EQ.0 .OR. N.EQ.0 ) THEN
            LWKOPT = 1
         ELSE
            NB = MIN( NBMAX, ILAENV( 1, 'DORMQL', SIDE // TRANS, M, N, &
                                     K, -1 ) )
            LWKOPT = NW*NB + TSIZE
         END IF
         WORK( 1 ) = LWKOPT
      END IF
!
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DORMQL', -INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         RETURN
      END IF
!
!     Quick return if possible
!
      IF( M.EQ.0 .OR. N.EQ.0 ) THEN
         RETURN
      END IF
!
      NBMIN = 2
      LDWORK = NW
      IF( NB.GT.1 .AND. NB.LT.K ) THEN
         IF( LWORK.LT.NW*NB+TSIZE ) THEN
            NB = (LWORK-TSIZE) / LDWORK
            NBMIN = MAX( 2, ILAENV( 2, 'DORMQL', SIDE // TRANS, M, N, K, &
                    -1 ) )
         END IF
      END IF
!
      IF( NB.LT.NBMIN .OR. NB.GE.K ) THEN
!
!        Use unblocked code
!
         CALL DORM2L( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, &
                      IINFO )
      ELSE
!
!        Use blocked code
!
         IWT = 1 + NW*NB
         IF( ( LEFT .AND. NOTRAN ) .OR. &
             ( .NOT.LEFT .AND. .NOT.NOTRAN ) ) THEN
            I1 = 1
            I2 = K
            I3 = NB
         ELSE
            I1 = ( ( K-1 ) / NB )*NB + 1
            I2 = 1
            I3 = -NB
         END IF
!
         IF( LEFT ) THEN
            NI = N
         ELSE
            MI = M
         END IF
!
         DO 10 I = I1, I2, I3
            IB = MIN( NB, K-I+1 )
!
!           Form the triangular factor of the block reflector
!           H = H(i+ib-1) . . . H(i+1) H(i)
!
            CALL DLARFT( 'Backward', 'Columnwise', NQ-K+I+IB-1, IB, &
                         A( 1, I ), LDA, TAU( I ), WORK( IWT ), LDT )
            IF( LEFT ) THEN
!
!              H or H**T is applied to C(1:m-k+i+ib-1,1:n)
!
               MI = M - K + I + IB - 1
            ELSE
!
!              H or H**T is applied to C(1:m,1:n-k+i+ib-1)
!
               NI = N - K + I + IB - 1
            END IF
!
!           Apply H or H**T
!
            CALL DLARFB( SIDE, TRANS, 'Backward', 'Columnwise', MI, NI, &
                         IB, A( 1, I ), LDA, WORK( IWT ), LDT, C, LDC, &
                         WORK, LDWORK )
   10    CONTINUE
      END IF
      WORK( 1 ) = LWKOPT
      RETURN
!
!     End of DORMQL
!
      END