dormbr.F90 Source File


Source Code

#include "ESMF_LapackBlas.inc"
!> \brief \b DORMBR
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!> \htmlonly
!> Download DORMBR + dependencies
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dormbr.f">
!> [TGZ]</a>
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dormbr.f">
!> [ZIP]</a>
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dormbr.f">
!> [TXT]</a>
!> \endhtmlonly
!
!  Definition:
!  ===========
!
!       SUBROUTINE DORMBR( VECT, SIDE, TRANS, M, N, K, A, LDA, TAU, C,
!                          LDC, WORK, LWORK, INFO )
!
!       .. Scalar Arguments ..
!       CHARACTER          SIDE, TRANS, VECT
!       INTEGER            INFO, K, LDA, LDC, LWORK, M, N
!       ..
!       .. Array Arguments ..
!       DOUBLE PRECISION   A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> If VECT = 'Q', DORMBR overwrites the general real M-by-N matrix C
!> with
!>                 SIDE = 'L'     SIDE = 'R'
!> TRANS = 'N':      Q * C          C * Q
!> TRANS = 'T':      Q**T * C       C * Q**T
!>
!> If VECT = 'P', DORMBR overwrites the general real M-by-N matrix C
!> with
!>                 SIDE = 'L'     SIDE = 'R'
!> TRANS = 'N':      P * C          C * P
!> TRANS = 'T':      P**T * C       C * P**T
!>
!> Here Q and P**T are the orthogonal matrices determined by DGEBRD when
!> reducing a real matrix A to bidiagonal form: A = Q * B * P**T. Q and
!> P**T are defined as products of elementary reflectors H(i) and G(i)
!> respectively.
!>
!> Let nq = m if SIDE = 'L' and nq = n if SIDE = 'R'. Thus nq is the
!> order of the orthogonal matrix Q or P**T that is applied.
!>
!> If VECT = 'Q', A is assumed to have been an NQ-by-K matrix:
!> if nq >= k, Q = H(1) H(2) . . . H(k);
!> if nq < k, Q = H(1) H(2) . . . H(nq-1).
!>
!> If VECT = 'P', A is assumed to have been a K-by-NQ matrix:
!> if k < nq, P = G(1) G(2) . . . G(k);
!> if k >= nq, P = G(1) G(2) . . . G(nq-1).
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] VECT
!> \verbatim
!>          VECT is CHARACTER*1
!>          = 'Q': apply Q or Q**T;
!>          = 'P': apply P or P**T.
!> \endverbatim
!>
!> \param[in] SIDE
!> \verbatim
!>          SIDE is CHARACTER*1
!>          = 'L': apply Q, Q**T, P or P**T from the Left;
!>          = 'R': apply Q, Q**T, P or P**T from the Right.
!> \endverbatim
!>
!> \param[in] TRANS
!> \verbatim
!>          TRANS is CHARACTER*1
!>          = 'N':  No transpose, apply Q  or P;
!>          = 'T':  Transpose, apply Q**T or P**T.
!> \endverbatim
!>
!> \param[in] M
!> \verbatim
!>          M is INTEGER
!>          The number of rows of the matrix C. M >= 0.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>          The number of columns of the matrix C. N >= 0.
!> \endverbatim
!>
!> \param[in] K
!> \verbatim
!>          K is INTEGER
!>          If VECT = 'Q', the number of columns in the original
!>          matrix reduced by DGEBRD.
!>          If VECT = 'P', the number of rows in the original
!>          matrix reduced by DGEBRD.
!>          K >= 0.
!> \endverbatim
!>
!> \param[in] A
!> \verbatim
!>          A is DOUBLE PRECISION array, dimension
!>                                (LDA,min(nq,K)) if VECT = 'Q'
!>                                (LDA,nq)        if VECT = 'P'
!>          The vectors which define the elementary reflectors H(i) and
!>          G(i), whose products determine the matrices Q and P, as
!>          returned by DGEBRD.
!> \endverbatim
!>
!> \param[in] LDA
!> \verbatim
!>          LDA is INTEGER
!>          The leading dimension of the array A.
!>          If VECT = 'Q', LDA >= max(1,nq);
!>          if VECT = 'P', LDA >= max(1,min(nq,K)).
!> \endverbatim
!>
!> \param[in] TAU
!> \verbatim
!>          TAU is DOUBLE PRECISION array, dimension (min(nq,K))
!>          TAU(i) must contain the scalar factor of the elementary
!>          reflector H(i) or G(i) which determines Q or P, as returned
!>          by DGEBRD in the array argument TAUQ or TAUP.
!> \endverbatim
!>
!> \param[in,out] C
!> \verbatim
!>          C is DOUBLE PRECISION array, dimension (LDC,N)
!>          On entry, the M-by-N matrix C.
!>          On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q
!>          or P*C or P**T*C or C*P or C*P**T.
!> \endverbatim
!>
!> \param[in] LDC
!> \verbatim
!>          LDC is INTEGER
!>          The leading dimension of the array C. LDC >= max(1,M).
!> \endverbatim
!>
!> \param[out] WORK
!> \verbatim
!>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
!>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
!> \endverbatim
!>
!> \param[in] LWORK
!> \verbatim
!>          LWORK is INTEGER
!>          The dimension of the array WORK.
!>          If SIDE = 'L', LWORK >= max(1,N);
!>          if SIDE = 'R', LWORK >= max(1,M).
!>          For optimum performance LWORK >= N*NB if SIDE = 'L', and
!>          LWORK >= M*NB if SIDE = 'R', where NB is the optimal
!>          blocksize.
!>
!>          If LWORK = -1, then a workspace query is assumed; the routine
!>          only calculates the optimal size of the WORK array, returns
!>          this value as the first entry of the WORK array, and no error
!>          message related to LWORK is issued by XERBLA.
!> \endverbatim
!>
!> \param[out] INFO
!> \verbatim
!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date November 2011
!
!> \ingroup doubleOTHERcomputational
!
!  =====================================================================
      SUBROUTINE DORMBR( VECT, SIDE, TRANS, M, N, K, A, LDA, TAU, C, &
     &                   LDC, WORK, LWORK, INFO )
!
!  -- LAPACK computational routine (version 3.4.0) --
!  -- LAPACK is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     November 2011
!
!     .. Scalar Arguments ..
      CHARACTER          SIDE, TRANS, VECT
      INTEGER            INFO, K, LDA, LDC, LWORK, M, N
!     ..
!     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
!     ..
!
!  =====================================================================
!
!     .. Local Scalars ..
      LOGICAL            APPLYQ, LEFT, LQUERY, NOTRAN
      CHARACTER          TRANST
      INTEGER            I1, I2, IINFO, LWKOPT, MI, NB, NI, NQ, NW
!     ..
!     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            ILAENV
      EXTERNAL           LSAME, ILAENV
!     ..
!     .. External Subroutines ..
      EXTERNAL           DORMLQ, DORMQR, XERBLA
!     ..
!     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN
!     ..
!     .. Executable Statements ..
!
!     Test the input arguments
!
      INFO = 0
      APPLYQ = LSAME( VECT, 'Q' )
      LEFT = LSAME( SIDE, 'L' )
      NOTRAN = LSAME( TRANS, 'N' )
      LQUERY = ( LWORK.EQ.-1 )
!
!     NQ is the order of Q or P and NW is the minimum dimension of WORK
!
      IF( LEFT ) THEN
         NQ = M
         NW = N
      ELSE
         NQ = N
         NW = M
      END IF
      IF( .NOT.APPLYQ .AND. .NOT.LSAME( VECT, 'P' ) ) THEN
         INFO = -1
      ELSE IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
         INFO = -2
      ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) ) THEN
         INFO = -3
      ELSE IF( M.LT.0 ) THEN
         INFO = -4
      ELSE IF( N.LT.0 ) THEN
         INFO = -5
      ELSE IF( K.LT.0 ) THEN
         INFO = -6
      ELSE IF( ( APPLYQ .AND. LDA.LT.MAX( 1, NQ ) ) .OR. &
     &         ( .NOT.APPLYQ .AND. LDA.LT.MAX( 1, MIN( NQ, K ) ) ) ) &
     &          THEN
         INFO = -8
      ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
         INFO = -11
      ELSE IF( LWORK.LT.MAX( 1, NW ) .AND. .NOT.LQUERY ) THEN
         INFO = -13
      END IF
!
      IF( INFO.EQ.0 ) THEN
         IF( APPLYQ ) THEN
            IF( LEFT ) THEN
               NB = ILAENV( 1, 'DORMQR', SIDE // TRANS, M-1, N, M-1, &
     &              -1 )
            ELSE
               NB = ILAENV( 1, 'DORMQR', SIDE // TRANS, M, N-1, N-1, &
     &              -1 )
            END IF
         ELSE
            IF( LEFT ) THEN
               NB = ILAENV( 1, 'DORMLQ', SIDE // TRANS, M-1, N, M-1, &
     &              -1 )
            ELSE
               NB = ILAENV( 1, 'DORMLQ', SIDE // TRANS, M, N-1, N-1, &
     &              -1 )
            END IF
         END IF
         LWKOPT = MAX( 1, NW )*NB
         WORK( 1 ) = LWKOPT
      END IF
!
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DORMBR', -INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         RETURN
      END IF
!
!     Quick return if possible
!
      WORK( 1 ) = 1
      IF( M.EQ.0 .OR. N.EQ.0 ) &
     &   RETURN
!
      IF( APPLYQ ) THEN
!
!        Apply Q
!
         IF( NQ.GE.K ) THEN
!
!           Q was determined by a call to DGEBRD with nq >= k
!
            CALL DORMQR( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, &
     &                   WORK, LWORK, IINFO )
         ELSE IF( NQ.GT.1 ) THEN
!
!           Q was determined by a call to DGEBRD with nq < k
!
            IF( LEFT ) THEN
               MI = M - 1
               NI = N
               I1 = 2
               I2 = 1
            ELSE
               MI = M
               NI = N - 1
               I1 = 1
               I2 = 2
            END IF
            CALL DORMQR( SIDE, TRANS, MI, NI, NQ-1, A( 2, 1 ), LDA, TAU, &
     &                   C( I1, I2 ), LDC, WORK, LWORK, IINFO )
         END IF
      ELSE
!
!        Apply P
!
         IF( NOTRAN ) THEN
            TRANST = 'T'
         ELSE
            TRANST = 'N'
         END IF
         IF( NQ.GT.K ) THEN
!
!           P was determined by a call to DGEBRD with nq > k
!
            CALL DORMLQ( SIDE, TRANST, M, N, K, A, LDA, TAU, C, LDC, &
     &                   WORK, LWORK, IINFO )
         ELSE IF( NQ.GT.1 ) THEN
!
!           P was determined by a call to DGEBRD with nq <= k
!
            IF( LEFT ) THEN
               MI = M - 1
               NI = N
               I1 = 2
               I2 = 1
            ELSE
               MI = M
               NI = N - 1
               I1 = 1
               I2 = 2
            END IF
            CALL DORMLQ( SIDE, TRANST, MI, NI, NQ-1, A( 1, 2 ), LDA, &
     &                   TAU, C( I1, I2 ), LDC, WORK, LWORK, IINFO )
         END IF
      END IF
      WORK( 1 ) = LWKOPT
      RETURN
!
!     End of DORMBR
!
      END