dorgqr.F90 Source File


Source Code

#include "ESMF_LapackBlas.inc"
!> \brief \b DORGQR
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!> \htmlonly
!> Download DORGQR + dependencies
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dorgqr.f">
!> [TGZ]</a>
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dorgqr.f">
!> [ZIP]</a>
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dorgqr.f">
!> [TXT]</a>
!> \endhtmlonly
!
!  Definition:
!  ===========
!
!       SUBROUTINE DORGQR( M, N, K, A, LDA, TAU, WORK, LWORK, INFO )
!
!       .. Scalar Arguments ..
!       INTEGER            INFO, K, LDA, LWORK, M, N
!       ..
!       .. Array Arguments ..
!       DOUBLE PRECISION   A( LDA, * ), TAU( * ), WORK( * )
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> DORGQR generates an M-by-N real matrix Q with orthonormal columns,
!> which is defined as the first N columns of a product of K elementary
!> reflectors of order M
!>
!>       Q  =  H(1) H(2) . . . H(k)
!>
!> as returned by DGEQRF.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] M
!> \verbatim
!>          M is INTEGER
!>          The number of rows of the matrix Q. M >= 0.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>          The number of columns of the matrix Q. M >= N >= 0.
!> \endverbatim
!>
!> \param[in] K
!> \verbatim
!>          K is INTEGER
!>          The number of elementary reflectors whose product defines the
!>          matrix Q. N >= K >= 0.
!> \endverbatim
!>
!> \param[in,out] A
!> \verbatim
!>          A is DOUBLE PRECISION array, dimension (LDA,N)
!>          On entry, the i-th column must contain the vector which
!>          defines the elementary reflector H(i), for i = 1,2,...,k, as
!>          returned by DGEQRF in the first k columns of its array
!>          argument A.
!>          On exit, the M-by-N matrix Q.
!> \endverbatim
!>
!> \param[in] LDA
!> \verbatim
!>          LDA is INTEGER
!>          The first dimension of the array A. LDA >= max(1,M).
!> \endverbatim
!>
!> \param[in] TAU
!> \verbatim
!>          TAU is DOUBLE PRECISION array, dimension (K)
!>          TAU(i) must contain the scalar factor of the elementary
!>          reflector H(i), as returned by DGEQRF.
!> \endverbatim
!>
!> \param[out] WORK
!> \verbatim
!>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
!>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
!> \endverbatim
!>
!> \param[in] LWORK
!> \verbatim
!>          LWORK is INTEGER
!>          The dimension of the array WORK. LWORK >= max(1,N).
!>          For optimum performance LWORK >= N*NB, where NB is the
!>          optimal blocksize.
!>
!>          If LWORK = -1, then a workspace query is assumed; the routine
!>          only calculates the optimal size of the WORK array, returns
!>          this value as the first entry of the WORK array, and no error
!>          message related to LWORK is issued by XERBLA.
!> \endverbatim
!>
!> \param[out] INFO
!> \verbatim
!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument has an illegal value
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup doubleOTHERcomputational
!
!  =====================================================================
      SUBROUTINE DORGQR( M, N, K, A, LDA, TAU, WORK, LWORK, INFO )
!
!  -- LAPACK computational routine (version 3.7.0) --
!  -- LAPACK is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
      INTEGER            INFO, K, LDA, LWORK, M, N
!     ..
!     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * ), TAU( * ), WORK( * )
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
      DOUBLE PRECISION   ZERO
      PARAMETER          ( ZERO = 0.0D+0 )
!     ..
!     .. Local Scalars ..
      LOGICAL            LQUERY
      INTEGER            I, IB, IINFO, IWS, J, KI, KK, L, LDWORK, &
                         LWKOPT, NB, NBMIN, NX
!     ..
!     .. External Subroutines ..
      EXTERNAL           DLARFB, DLARFT, DORG2R, XERBLA
!     ..
!     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN
!     ..
!     .. External Functions ..
      INTEGER            ILAENV
      EXTERNAL           ILAENV
!     ..
!     .. Executable Statements ..
!
!     Test the input arguments
!
      INFO = 0
      NB = ILAENV( 1, 'DORGQR', ' ', M, N, K, -1 )
      LWKOPT = MAX( 1, N )*NB
      WORK( 1 ) = LWKOPT
      LQUERY = ( LWORK.EQ.-1 )
      IF( M.LT.0 ) THEN
         INFO = -1
      ELSE IF( N.LT.0 .OR. N.GT.M ) THEN
         INFO = -2
      ELSE IF( K.LT.0 .OR. K.GT.N ) THEN
         INFO = -3
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
         INFO = -5
      ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN
         INFO = -8
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DORGQR', -INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         RETURN
      END IF
!
!     Quick return if possible
!
      IF( N.LE.0 ) THEN
         WORK( 1 ) = 1
         RETURN
      END IF
!
      NBMIN = 2
      NX = 0
      IWS = N
      IF( NB.GT.1 .AND. NB.LT.K ) THEN
!
!        Determine when to cross over from blocked to unblocked code.
!
         NX = MAX( 0, ILAENV( 3, 'DORGQR', ' ', M, N, K, -1 ) )
         IF( NX.LT.K ) THEN
!
!           Determine if workspace is large enough for blocked code.
!
            LDWORK = N
            IWS = LDWORK*NB
            IF( LWORK.LT.IWS ) THEN
!
!              Not enough workspace to use optimal NB:  reduce NB and
!              determine the minimum value of NB.
!
               NB = LWORK / LDWORK
               NBMIN = MAX( 2, ILAENV( 2, 'DORGQR', ' ', M, N, K, -1 ) )
            END IF
         END IF
      END IF
!
      IF( NB.GE.NBMIN .AND. NB.LT.K .AND. NX.LT.K ) THEN
!
!        Use blocked code after the last block.
!        The first kk columns are handled by the block method.
!
         KI = ( ( K-NX-1 ) / NB )*NB
         KK = MIN( K, KI+NB )
!
!        Set A(1:kk,kk+1:n) to zero.
!
         DO 20 J = KK + 1, N
            DO 10 I = 1, KK
               A( I, J ) = ZERO
   10       CONTINUE
   20    CONTINUE
      ELSE
         KK = 0
      END IF
!
!     Use unblocked code for the last or only block.
!
      IF( KK.LT.N ) &
         CALL DORG2R( M-KK, N-KK, K-KK, A( KK+1, KK+1 ), LDA, &
                      TAU( KK+1 ), WORK, IINFO )
!
      IF( KK.GT.0 ) THEN
!
!        Use blocked code
!
         DO 50 I = KI + 1, 1, -NB
            IB = MIN( NB, K-I+1 )
            IF( I+IB.LE.N ) THEN
!
!              Form the triangular factor of the block reflector
!              H = H(i) H(i+1) . . . H(i+ib-1)
!
               CALL DLARFT( 'Forward', 'Columnwise', M-I+1, IB, &
                            A( I, I ), LDA, TAU( I ), WORK, LDWORK )
!
!              Apply H to A(i:m,i+ib:n) from the left
!
               CALL DLARFB( 'Left', 'No transpose', 'Forward', &
                            'Columnwise', M-I+1, N-I-IB+1, IB, &
                            A( I, I ), LDA, WORK, LDWORK, A( I, I+IB ), &
                            LDA, WORK( IB+1 ), LDWORK )
            END IF
!
!           Apply H to rows i:m of current block
!
            CALL DORG2R( M-I+1, IB, IB, A( I, I ), LDA, TAU( I ), WORK, &
                         IINFO )
!
!           Set rows 1:i-1 of current block to zero
!
            DO 40 J = I, I + IB - 1
               DO 30 L = 1, I - 1
                  A( L, J ) = ZERO
   30          CONTINUE
   40       CONTINUE
   50    CONTINUE
      END IF
!
      WORK( 1 ) = IWS
      RETURN
!
!     End of DORGQR
!
      END