dlasr.F90 Source File


Source Code

#include "ESMF_LapackBlas.inc"
!> \brief \b DLASR
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!> \htmlonly
!> Download DLASR + dependencies
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasr.f">
!> [TGZ]</a>
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasr.f">
!> [ZIP]</a>
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasr.f">
!> [TXT]</a>
!> \endhtmlonly
!
!  Definition:
!  ===========
!
!       SUBROUTINE DLASR( SIDE, PIVOT, DIRECT, M, N, C, S, A, LDA )
!
!       .. Scalar Arguments ..
!       CHARACTER          DIRECT, PIVOT, SIDE
!       INTEGER            LDA, M, N
!       ..
!       .. Array Arguments ..
!       DOUBLE PRECISION   A( LDA, * ), C( * ), S( * )
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> DLASR applies a sequence of plane rotations to a real matrix A,
!> from either the left or the right.
!>
!> When SIDE = 'L', the transformation takes the form
!>
!>    A := P*A
!>
!> and when SIDE = 'R', the transformation takes the form
!>
!>    A := A*P**T
!>
!> where P is an orthogonal matrix consisting of a sequence of z plane
!> rotations, with z = M when SIDE = 'L' and z = N when SIDE = 'R',
!> and P**T is the transpose of P.
!>
!> When DIRECT = 'F' (Forward sequence), then
!>
!>    P = P(z-1) * ... * P(2) * P(1)
!>
!> and when DIRECT = 'B' (Backward sequence), then
!>
!>    P = P(1) * P(2) * ... * P(z-1)
!>
!> where P(k) is a plane rotation matrix defined by the 2-by-2 rotation
!>
!>    R(k) = (  c(k)  s(k) )
!>         = ( -s(k)  c(k) ).
!>
!> When PIVOT = 'V' (Variable pivot), the rotation is performed
!> for the plane (k,k+1), i.e., P(k) has the form
!>
!>    P(k) = (  1                                            )
!>           (       ...                                     )
!>           (              1                                )
!>           (                   c(k)  s(k)                  )
!>           (                  -s(k)  c(k)                  )
!>           (                                1              )
!>           (                                     ...       )
!>           (                                            1  )
!>
!> where R(k) appears as a rank-2 modification to the identity matrix in
!> rows and columns k and k+1.
!>
!> When PIVOT = 'T' (Top pivot), the rotation is performed for the
!> plane (1,k+1), so P(k) has the form
!>
!>    P(k) = (  c(k)                    s(k)                 )
!>           (         1                                     )
!>           (              ...                              )
!>           (                     1                         )
!>           ( -s(k)                    c(k)                 )
!>           (                                 1             )
!>           (                                      ...      )
!>           (                                             1 )
!>
!> where R(k) appears in rows and columns 1 and k+1.
!>
!> Similarly, when PIVOT = 'B' (Bottom pivot), the rotation is
!> performed for the plane (k,z), giving P(k) the form
!>
!>    P(k) = ( 1                                             )
!>           (      ...                                      )
!>           (             1                                 )
!>           (                  c(k)                    s(k) )
!>           (                         1                     )
!>           (                              ...              )
!>           (                                     1         )
!>           (                 -s(k)                    c(k) )
!>
!> where R(k) appears in rows and columns k and z.  The rotations are
!> performed without ever forming P(k) explicitly.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] SIDE
!> \verbatim
!>          SIDE is CHARACTER*1
!>          Specifies whether the plane rotation matrix P is applied to
!>          A on the left or the right.
!>          = 'L':  Left, compute A := P*A
!>          = 'R':  Right, compute A:= A*P**T
!> \endverbatim
!>
!> \param[in] PIVOT
!> \verbatim
!>          PIVOT is CHARACTER*1
!>          Specifies the plane for which P(k) is a plane rotation
!>          matrix.
!>          = 'V':  Variable pivot, the plane (k,k+1)
!>          = 'T':  Top pivot, the plane (1,k+1)
!>          = 'B':  Bottom pivot, the plane (k,z)
!> \endverbatim
!>
!> \param[in] DIRECT
!> \verbatim
!>          DIRECT is CHARACTER*1
!>          Specifies whether P is a forward or backward sequence of
!>          plane rotations.
!>          = 'F':  Forward, P = P(z-1)*...*P(2)*P(1)
!>          = 'B':  Backward, P = P(1)*P(2)*...*P(z-1)
!> \endverbatim
!>
!> \param[in] M
!> \verbatim
!>          M is INTEGER
!>          The number of rows of the matrix A.  If m <= 1, an immediate
!>          return is effected.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>          The number of columns of the matrix A.  If n <= 1, an
!>          immediate return is effected.
!> \endverbatim
!>
!> \param[in] C
!> \verbatim
!>          C is DOUBLE PRECISION array, dimension
!>                  (M-1) if SIDE = 'L'
!>                  (N-1) if SIDE = 'R'
!>          The cosines c(k) of the plane rotations.
!> \endverbatim
!>
!> \param[in] S
!> \verbatim
!>          S is DOUBLE PRECISION array, dimension
!>                  (M-1) if SIDE = 'L'
!>                  (N-1) if SIDE = 'R'
!>          The sines s(k) of the plane rotations.  The 2-by-2 plane
!>          rotation part of the matrix P(k), R(k), has the form
!>          R(k) = (  c(k)  s(k) )
!>                 ( -s(k)  c(k) ).
!> \endverbatim
!>
!> \param[in,out] A
!> \verbatim
!>          A is DOUBLE PRECISION array, dimension (LDA,N)
!>          The M-by-N matrix A.  On exit, A is overwritten by P*A if
!>          SIDE = 'R' or by A*P**T if SIDE = 'L'.
!> \endverbatim
!>
!> \param[in] LDA
!> \verbatim
!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,M).
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date November 2011
!
!> \ingroup auxOTHERauxiliary
!
!  =====================================================================
      SUBROUTINE DLASR( SIDE, PIVOT, DIRECT, M, N, C, S, A, LDA )
!
!  -- LAPACK auxiliary routine (version 3.4.0) --
!  -- LAPACK is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     November 2011
!
!     .. Scalar Arguments ..
      CHARACTER          DIRECT, PIVOT, SIDE
      INTEGER            LDA, M, N
!     ..
!     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * ), C( * ), S( * )
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
      DOUBLE PRECISION   ONE, ZERO
      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
!     ..
!     .. Local Scalars ..
      INTEGER            I, INFO, J
      DOUBLE PRECISION   CTEMP, STEMP, TEMP
!     ..
!     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
!     ..
!     .. External Subroutines ..
      EXTERNAL           XERBLA
!     ..
!     .. Intrinsic Functions ..
      INTRINSIC          MAX
!     ..
!     .. Executable Statements ..
!
!     Test the input parameters
!
      INFO = 0
      IF( .NOT.( LSAME( SIDE, 'L' ) .OR. LSAME( SIDE, 'R' ) ) ) THEN
         INFO = 1
      ELSE IF( .NOT.( LSAME( PIVOT, 'V' ) .OR. LSAME( PIVOT, &
     &         'T' ) .OR. LSAME( PIVOT, 'B' ) ) ) THEN
         INFO = 2
      ELSE IF( .NOT.( LSAME( DIRECT, 'F' ) .OR. LSAME( DIRECT, 'B' ) ) ) &
     &          THEN
         INFO = 3
      ELSE IF( M.LT.0 ) THEN
         INFO = 4
      ELSE IF( N.LT.0 ) THEN
         INFO = 5
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
         INFO = 9
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DLASR ', INFO )
         RETURN
      END IF
!
!     Quick return if possible
!
      IF( ( M.EQ.0 ) .OR. ( N.EQ.0 ) ) &
     &   RETURN
      IF( LSAME( SIDE, 'L' ) ) THEN
!
!        Form  P * A
!
         IF( LSAME( PIVOT, 'V' ) ) THEN
            IF( LSAME( DIRECT, 'F' ) ) THEN
               DO 20 J = 1, M - 1
                  CTEMP = C( J )
                  STEMP = S( J )
                  IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
                     DO 10 I = 1, N
                        TEMP = A( J+1, I )
                        A( J+1, I ) = CTEMP*TEMP - STEMP*A( J, I )
                        A( J, I ) = STEMP*TEMP + CTEMP*A( J, I )
   10                CONTINUE
                  END IF
   20          CONTINUE
            ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
               DO 40 J = M - 1, 1, -1
                  CTEMP = C( J )
                  STEMP = S( J )
                  IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
                     DO 30 I = 1, N
                        TEMP = A( J+1, I )
                        A( J+1, I ) = CTEMP*TEMP - STEMP*A( J, I )
                        A( J, I ) = STEMP*TEMP + CTEMP*A( J, I )
   30                CONTINUE
                  END IF
   40          CONTINUE
            END IF
         ELSE IF( LSAME( PIVOT, 'T' ) ) THEN
            IF( LSAME( DIRECT, 'F' ) ) THEN
               DO 60 J = 2, M
                  CTEMP = C( J-1 )
                  STEMP = S( J-1 )
                  IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
                     DO 50 I = 1, N
                        TEMP = A( J, I )
                        A( J, I ) = CTEMP*TEMP - STEMP*A( 1, I )
                        A( 1, I ) = STEMP*TEMP + CTEMP*A( 1, I )
   50                CONTINUE
                  END IF
   60          CONTINUE
            ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
               DO 80 J = M, 2, -1
                  CTEMP = C( J-1 )
                  STEMP = S( J-1 )
                  IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
                     DO 70 I = 1, N
                        TEMP = A( J, I )
                        A( J, I ) = CTEMP*TEMP - STEMP*A( 1, I )
                        A( 1, I ) = STEMP*TEMP + CTEMP*A( 1, I )
   70                CONTINUE
                  END IF
   80          CONTINUE
            END IF
         ELSE IF( LSAME( PIVOT, 'B' ) ) THEN
            IF( LSAME( DIRECT, 'F' ) ) THEN
               DO 100 J = 1, M - 1
                  CTEMP = C( J )
                  STEMP = S( J )
                  IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
                     DO 90 I = 1, N
                        TEMP = A( J, I )
                        A( J, I ) = STEMP*A( M, I ) + CTEMP*TEMP
                        A( M, I ) = CTEMP*A( M, I ) - STEMP*TEMP
   90                CONTINUE
                  END IF
  100          CONTINUE
            ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
               DO 120 J = M - 1, 1, -1
                  CTEMP = C( J )
                  STEMP = S( J )
                  IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
                     DO 110 I = 1, N
                        TEMP = A( J, I )
                        A( J, I ) = STEMP*A( M, I ) + CTEMP*TEMP
                        A( M, I ) = CTEMP*A( M, I ) - STEMP*TEMP
  110                CONTINUE
                  END IF
  120          CONTINUE
            END IF
         END IF
      ELSE IF( LSAME( SIDE, 'R' ) ) THEN
!
!        Form A * P**T
!
         IF( LSAME( PIVOT, 'V' ) ) THEN
            IF( LSAME( DIRECT, 'F' ) ) THEN
               DO 140 J = 1, N - 1
                  CTEMP = C( J )
                  STEMP = S( J )
                  IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
                     DO 130 I = 1, M
                        TEMP = A( I, J+1 )
                        A( I, J+1 ) = CTEMP*TEMP - STEMP*A( I, J )
                        A( I, J ) = STEMP*TEMP + CTEMP*A( I, J )
  130                CONTINUE
                  END IF
  140          CONTINUE
            ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
               DO 160 J = N - 1, 1, -1
                  CTEMP = C( J )
                  STEMP = S( J )
                  IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
                     DO 150 I = 1, M
                        TEMP = A( I, J+1 )
                        A( I, J+1 ) = CTEMP*TEMP - STEMP*A( I, J )
                        A( I, J ) = STEMP*TEMP + CTEMP*A( I, J )
  150                CONTINUE
                  END IF
  160          CONTINUE
            END IF
         ELSE IF( LSAME( PIVOT, 'T' ) ) THEN
            IF( LSAME( DIRECT, 'F' ) ) THEN
               DO 180 J = 2, N
                  CTEMP = C( J-1 )
                  STEMP = S( J-1 )
                  IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
                     DO 170 I = 1, M
                        TEMP = A( I, J )
                        A( I, J ) = CTEMP*TEMP - STEMP*A( I, 1 )
                        A( I, 1 ) = STEMP*TEMP + CTEMP*A( I, 1 )
  170                CONTINUE
                  END IF
  180          CONTINUE
            ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
               DO 200 J = N, 2, -1
                  CTEMP = C( J-1 )
                  STEMP = S( J-1 )
                  IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
                     DO 190 I = 1, M
                        TEMP = A( I, J )
                        A( I, J ) = CTEMP*TEMP - STEMP*A( I, 1 )
                        A( I, 1 ) = STEMP*TEMP + CTEMP*A( I, 1 )
  190                CONTINUE
                  END IF
  200          CONTINUE
            END IF
         ELSE IF( LSAME( PIVOT, 'B' ) ) THEN
            IF( LSAME( DIRECT, 'F' ) ) THEN
               DO 220 J = 1, N - 1
                  CTEMP = C( J )
                  STEMP = S( J )
                  IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
                     DO 210 I = 1, M
                        TEMP = A( I, J )
                        A( I, J ) = STEMP*A( I, N ) + CTEMP*TEMP
                        A( I, N ) = CTEMP*A( I, N ) - STEMP*TEMP
  210                CONTINUE
                  END IF
  220          CONTINUE
            ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
               DO 240 J = N - 1, 1, -1
                  CTEMP = C( J )
                  STEMP = S( J )
                  IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
                     DO 230 I = 1, M
                        TEMP = A( I, J )
                        A( I, J ) = STEMP*A( I, N ) + CTEMP*TEMP
                        A( I, N ) = CTEMP*A( I, N ) - STEMP*TEMP
  230                CONTINUE
                  END IF
  240          CONTINUE
            END IF
         END IF
      END IF
!
      RETURN
!
!     End of DLASR
!
      END