dlasdq.F90 Source File


Source Code

#include "ESMF_LapackBlas.inc"
!> \brief \b DLASDQ
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!> \htmlonly
!> Download DLASDQ + dependencies
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasdq.f">
!> [TGZ]</a>
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasdq.f">
!> [ZIP]</a>
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasdq.f">
!> [TXT]</a>
!> \endhtmlonly
!
!  Definition:
!  ===========
!
!       SUBROUTINE DLASDQ( UPLO, SQRE, N, NCVT, NRU, NCC, D, E, VT, LDVT,
!                          U, LDU, C, LDC, WORK, INFO )
!
!       .. Scalar Arguments ..
!       CHARACTER          UPLO
!       INTEGER            INFO, LDC, LDU, LDVT, N, NCC, NCVT, NRU, SQRE
!       ..
!       .. Array Arguments ..
!       DOUBLE PRECISION   C( LDC, * ), D( * ), E( * ), U( LDU, * ),
!      $                   VT( LDVT, * ), WORK( * )
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> DLASDQ computes the singular value decomposition (SVD) of a real
!> (upper or lower) bidiagonal matrix with diagonal D and offdiagonal
!> E, accumulating the transformations if desired. Letting B denote
!> the input bidiagonal matrix, the algorithm computes orthogonal
!> matrices Q and P such that B = Q * S * P**T (P**T denotes the transpose
!> of P). The singular values S are overwritten on D.
!>
!> The input matrix U  is changed to U  * Q  if desired.
!> The input matrix VT is changed to P**T * VT if desired.
!> The input matrix C  is changed to Q**T * C  if desired.
!>
!> See "Computing  Small Singular Values of Bidiagonal Matrices With
!> Guaranteed High Relative Accuracy," by J. Demmel and W. Kahan,
!> LAPACK Working Note #3, for a detailed description of the algorithm.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] UPLO
!> \verbatim
!>          UPLO is CHARACTER*1
!>        On entry, UPLO specifies whether the input bidiagonal matrix
!>        is upper or lower bidiagonal, and wether it is square are
!>        not.
!>           UPLO = 'U' or 'u'   B is upper bidiagonal.
!>           UPLO = 'L' or 'l'   B is lower bidiagonal.
!> \endverbatim
!>
!> \param[in] SQRE
!> \verbatim
!>          SQRE is INTEGER
!>        = 0: then the input matrix is N-by-N.
!>        = 1: then the input matrix is N-by-(N+1) if UPLU = 'U' and
!>             (N+1)-by-N if UPLU = 'L'.
!>
!>        The bidiagonal matrix has
!>        N = NL + NR + 1 rows and
!>        M = N + SQRE >= N columns.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>        On entry, N specifies the number of rows and columns
!>        in the matrix. N must be at least 0.
!> \endverbatim
!>
!> \param[in] NCVT
!> \verbatim
!>          NCVT is INTEGER
!>        On entry, NCVT specifies the number of columns of
!>        the matrix VT. NCVT must be at least 0.
!> \endverbatim
!>
!> \param[in] NRU
!> \verbatim
!>          NRU is INTEGER
!>        On entry, NRU specifies the number of rows of
!>        the matrix U. NRU must be at least 0.
!> \endverbatim
!>
!> \param[in] NCC
!> \verbatim
!>          NCC is INTEGER
!>        On entry, NCC specifies the number of columns of
!>        the matrix C. NCC must be at least 0.
!> \endverbatim
!>
!> \param[in,out] D
!> \verbatim
!>          D is DOUBLE PRECISION array, dimension (N)
!>        On entry, D contains the diagonal entries of the
!>        bidiagonal matrix whose SVD is desired. On normal exit,
!>        D contains the singular values in ascending order.
!> \endverbatim
!>
!> \param[in,out] E
!> \verbatim
!>          E is DOUBLE PRECISION array.
!>        dimension is (N-1) if SQRE = 0 and N if SQRE = 1.
!>        On entry, the entries of E contain the offdiagonal entries
!>        of the bidiagonal matrix whose SVD is desired. On normal
!>        exit, E will contain 0. If the algorithm does not converge,
!>        D and E will contain the diagonal and superdiagonal entries
!>        of a bidiagonal matrix orthogonally equivalent to the one
!>        given as input.
!> \endverbatim
!>
!> \param[in,out] VT
!> \verbatim
!>          VT is DOUBLE PRECISION array, dimension (LDVT, NCVT)
!>        On entry, contains a matrix which on exit has been
!>        premultiplied by P**T, dimension N-by-NCVT if SQRE = 0
!>        and (N+1)-by-NCVT if SQRE = 1 (not referenced if NCVT=0).
!> \endverbatim
!>
!> \param[in] LDVT
!> \verbatim
!>          LDVT is INTEGER
!>        On entry, LDVT specifies the leading dimension of VT as
!>        declared in the calling (sub) program. LDVT must be at
!>        least 1. If NCVT is nonzero LDVT must also be at least N.
!> \endverbatim
!>
!> \param[in,out] U
!> \verbatim
!>          U is DOUBLE PRECISION array, dimension (LDU, N)
!>        On entry, contains a  matrix which on exit has been
!>        postmultiplied by Q, dimension NRU-by-N if SQRE = 0
!>        and NRU-by-(N+1) if SQRE = 1 (not referenced if NRU=0).
!> \endverbatim
!>
!> \param[in] LDU
!> \verbatim
!>          LDU is INTEGER
!>        On entry, LDU  specifies the leading dimension of U as
!>        declared in the calling (sub) program. LDU must be at
!>        least max( 1, NRU ) .
!> \endverbatim
!>
!> \param[in,out] C
!> \verbatim
!>          C is DOUBLE PRECISION array, dimension (LDC, NCC)
!>        On entry, contains an N-by-NCC matrix which on exit
!>        has been premultiplied by Q**T  dimension N-by-NCC if SQRE = 0
!>        and (N+1)-by-NCC if SQRE = 1 (not referenced if NCC=0).
!> \endverbatim
!>
!> \param[in] LDC
!> \verbatim
!>          LDC is INTEGER
!>        On entry, LDC  specifies the leading dimension of C as
!>        declared in the calling (sub) program. LDC must be at
!>        least 1. If NCC is nonzero, LDC must also be at least N.
!> \endverbatim
!>
!> \param[out] WORK
!> \verbatim
!>          WORK is DOUBLE PRECISION array, dimension (4*N)
!>        Workspace. Only referenced if one of NCVT, NRU, or NCC is
!>        nonzero, and if N is at least 2.
!> \endverbatim
!>
!> \param[out] INFO
!> \verbatim
!>          INFO is INTEGER
!>        On exit, a value of 0 indicates a successful exit.
!>        If INFO < 0, argument number -INFO is illegal.
!>        If INFO > 0, the algorithm did not converge, and INFO
!>        specifies how many superdiagonals did not converge.
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date November 2011
!
!> \ingroup auxOTHERauxiliary
!
!> \par Contributors:
!  ==================
!>
!>     Ming Gu and Huan Ren, Computer Science Division, University of
!>     California at Berkeley, USA
!>
!  =====================================================================
      SUBROUTINE DLASDQ( UPLO, SQRE, N, NCVT, NRU, NCC, D, E, VT, LDVT, &
     &                   U, LDU, C, LDC, WORK, INFO )
!
!  -- LAPACK auxiliary routine (version 3.4.0) --
!  -- LAPACK is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     November 2011
!
!     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            INFO, LDC, LDU, LDVT, N, NCC, NCVT, NRU, SQRE
!     ..
!     .. Array Arguments ..
      DOUBLE PRECISION   C( LDC, * ), D( * ), E( * ), U( LDU, * ), &
     &                   VT( LDVT, * ), WORK( * )
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
      DOUBLE PRECISION   ZERO
      PARAMETER          ( ZERO = 0.0D+0 )
!     ..
!     .. Local Scalars ..
      LOGICAL            ROTATE
      INTEGER            I, ISUB, IUPLO, J, NP1, SQRE1
      DOUBLE PRECISION   CS, R, SMIN, SN
!     ..
!     .. External Subroutines ..
      EXTERNAL           DBDSQR, DLARTG, DLASR, DSWAP, XERBLA
!     ..
!     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
!     ..
!     .. Intrinsic Functions ..
      INTRINSIC          MAX
!     ..
!     .. Executable Statements ..
!
!     Test the input parameters.
!
      INFO = 0
      IUPLO = 0
      IF( LSAME( UPLO, 'U' ) ) &
     &   IUPLO = 1
      IF( LSAME( UPLO, 'L' ) ) &
     &   IUPLO = 2
      IF( IUPLO.EQ.0 ) THEN
         INFO = -1
      ELSE IF( ( SQRE.LT.0 ) .OR. ( SQRE.GT.1 ) ) THEN
         INFO = -2
      ELSE IF( N.LT.0 ) THEN
         INFO = -3
      ELSE IF( NCVT.LT.0 ) THEN
         INFO = -4
      ELSE IF( NRU.LT.0 ) THEN
         INFO = -5
      ELSE IF( NCC.LT.0 ) THEN
         INFO = -6
      ELSE IF( ( NCVT.EQ.0 .AND. LDVT.LT.1 ) .OR. &
     &         ( NCVT.GT.0 .AND. LDVT.LT.MAX( 1, N ) ) ) THEN
         INFO = -10
      ELSE IF( LDU.LT.MAX( 1, NRU ) ) THEN
         INFO = -12
      ELSE IF( ( NCC.EQ.0 .AND. LDC.LT.1 ) .OR. &
     &         ( NCC.GT.0 .AND. LDC.LT.MAX( 1, N ) ) ) THEN
         INFO = -14
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DLASDQ', -INFO )
         RETURN
      END IF
      IF( N.EQ.0 ) &
     &   RETURN
!
!     ROTATE is true if any singular vectors desired, false otherwise
!
      ROTATE = ( NCVT.GT.0 ) .OR. ( NRU.GT.0 ) .OR. ( NCC.GT.0 )
      NP1 = N + 1
      SQRE1 = SQRE
!
!     If matrix non-square upper bidiagonal, rotate to be lower
!     bidiagonal.  The rotations are on the right.
!
      IF( ( IUPLO.EQ.1 ) .AND. ( SQRE1.EQ.1 ) ) THEN
         DO 10 I = 1, N - 1
            CALL DLARTG( D( I ), E( I ), CS, SN, R )
            D( I ) = R
            E( I ) = SN*D( I+1 )
            D( I+1 ) = CS*D( I+1 )
            IF( ROTATE ) THEN
               WORK( I ) = CS
               WORK( N+I ) = SN
            END IF
   10    CONTINUE
         CALL DLARTG( D( N ), E( N ), CS, SN, R )
         D( N ) = R
         E( N ) = ZERO
         IF( ROTATE ) THEN
            WORK( N ) = CS
            WORK( N+N ) = SN
         END IF
         IUPLO = 2
         SQRE1 = 0
!
!        Update singular vectors if desired.
!
         IF( NCVT.GT.0 ) &
     &      CALL DLASR( 'L', 'V', 'F', NP1, NCVT, WORK( 1 ), &
     &                  WORK( NP1 ), VT, LDVT )
      END IF
!
!     If matrix lower bidiagonal, rotate to be upper bidiagonal
!     by applying Givens rotations on the left.
!
      IF( IUPLO.EQ.2 ) THEN
         DO 20 I = 1, N - 1
            CALL DLARTG( D( I ), E( I ), CS, SN, R )
            D( I ) = R
            E( I ) = SN*D( I+1 )
            D( I+1 ) = CS*D( I+1 )
            IF( ROTATE ) THEN
               WORK( I ) = CS
               WORK( N+I ) = SN
            END IF
   20    CONTINUE
!
!        If matrix (N+1)-by-N lower bidiagonal, one additional
!        rotation is needed.
!
         IF( SQRE1.EQ.1 ) THEN
            CALL DLARTG( D( N ), E( N ), CS, SN, R )
            D( N ) = R
            IF( ROTATE ) THEN
               WORK( N ) = CS
               WORK( N+N ) = SN
            END IF
         END IF
!
!        Update singular vectors if desired.
!
         IF( NRU.GT.0 ) THEN
            IF( SQRE1.EQ.0 ) THEN
               CALL DLASR( 'R', 'V', 'F', NRU, N, WORK( 1 ), &
     &                     WORK( NP1 ), U, LDU )
            ELSE
               CALL DLASR( 'R', 'V', 'F', NRU, NP1, WORK( 1 ), &
     &                     WORK( NP1 ), U, LDU )
            END IF
         END IF
         IF( NCC.GT.0 ) THEN
            IF( SQRE1.EQ.0 ) THEN
               CALL DLASR( 'L', 'V', 'F', N, NCC, WORK( 1 ), &
     &                     WORK( NP1 ), C, LDC )
            ELSE
               CALL DLASR( 'L', 'V', 'F', NP1, NCC, WORK( 1 ), &
     &                     WORK( NP1 ), C, LDC )
            END IF
         END IF
      END IF
!
!     Call DBDSQR to compute the SVD of the reduced real
!     N-by-N upper bidiagonal matrix.
!
      CALL DBDSQR( 'U', N, NCVT, NRU, NCC, D, E, VT, LDVT, U, LDU, C, &
     &             LDC, WORK, INFO )
!
!     Sort the singular values into ascending order (insertion sort on
!     singular values, but only one transposition per singular vector)
!
      DO 40 I = 1, N
!
!        Scan for smallest D(I).
!
         ISUB = I
         SMIN = D( I )
         DO 30 J = I + 1, N
            IF( D( J ).LT.SMIN ) THEN
               ISUB = J
               SMIN = D( J )
            END IF
   30    CONTINUE
         IF( ISUB.NE.I ) THEN
!
!           Swap singular values and vectors.
!
            D( ISUB ) = D( I )
            D( I ) = SMIN
            IF( NCVT.GT.0 ) &
     &         CALL DSWAP( NCVT, VT( ISUB, 1 ), LDVT, VT( I, 1 ), LDVT )
            IF( NRU.GT.0 ) &
     &         CALL DSWAP( NRU, U( 1, ISUB ), 1, U( 1, I ), 1 )
            IF( NCC.GT.0 ) &
     &         CALL DSWAP( NCC, C( ISUB, 1 ), LDC, C( I, 1 ), LDC )
         END IF
   40 CONTINUE
!
      RETURN
!
!     End of DLASDQ
!
      END