dlasda.F90 Source File


Source Code

#include "ESMF_LapackBlas.inc"
!> \brief \b DLASDA
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!> \htmlonly
!> Download DLASDA + dependencies
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasda.f">
!> [TGZ]</a>
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasda.f">
!> [ZIP]</a>
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasda.f">
!> [TXT]</a>
!> \endhtmlonly
!
!  Definition:
!  ===========
!
!       SUBROUTINE DLASDA( ICOMPQ, SMLSIZ, N, SQRE, D, E, U, LDU, VT, K,
!                          DIFL, DIFR, Z, POLES, GIVPTR, GIVCOL, LDGCOL,
!                          PERM, GIVNUM, C, S, WORK, IWORK, INFO )
!
!       .. Scalar Arguments ..
!       INTEGER            ICOMPQ, INFO, LDGCOL, LDU, N, SMLSIZ, SQRE
!       ..
!       .. Array Arguments ..
!       INTEGER            GIVCOL( LDGCOL, * ), GIVPTR( * ), IWORK( * ),
!      $                   K( * ), PERM( LDGCOL, * )
!       DOUBLE PRECISION   C( * ), D( * ), DIFL( LDU, * ), DIFR( LDU, * ),
!      $                   E( * ), GIVNUM( LDU, * ), POLES( LDU, * ),
!      $                   S( * ), U( LDU, * ), VT( LDU, * ), WORK( * ),
!      $                   Z( LDU, * )
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> Using a divide and conquer approach, DLASDA computes the singular
!> value decomposition (SVD) of a real upper bidiagonal N-by-M matrix
!> B with diagonal D and offdiagonal E, where M = N + SQRE. The
!> algorithm computes the singular values in the SVD B = U * S * VT.
!> The orthogonal matrices U and VT are optionally computed in
!> compact form.
!>
!> A related subroutine, DLASD0, computes the singular values and
!> the singular vectors in explicit form.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] ICOMPQ
!> \verbatim
!>          ICOMPQ is INTEGER
!>         Specifies whether singular vectors are to be computed
!>         in compact form, as follows
!>         = 0: Compute singular values only.
!>         = 1: Compute singular vectors of upper bidiagonal
!>              matrix in compact form.
!> \endverbatim
!>
!> \param[in] SMLSIZ
!> \verbatim
!>          SMLSIZ is INTEGER
!>         The maximum size of the subproblems at the bottom of the
!>         computation tree.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>         The row dimension of the upper bidiagonal matrix. This is
!>         also the dimension of the main diagonal array D.
!> \endverbatim
!>
!> \param[in] SQRE
!> \verbatim
!>          SQRE is INTEGER
!>         Specifies the column dimension of the bidiagonal matrix.
!>         = 0: The bidiagonal matrix has column dimension M = N;
!>         = 1: The bidiagonal matrix has column dimension M = N + 1.
!> \endverbatim
!>
!> \param[in,out] D
!> \verbatim
!>          D is DOUBLE PRECISION array, dimension ( N )
!>         On entry D contains the main diagonal of the bidiagonal
!>         matrix. On exit D, if INFO = 0, contains its singular values.
!> \endverbatim
!>
!> \param[in] E
!> \verbatim
!>          E is DOUBLE PRECISION array, dimension ( M-1 )
!>         Contains the subdiagonal entries of the bidiagonal matrix.
!>         On exit, E has been destroyed.
!> \endverbatim
!>
!> \param[out] U
!> \verbatim
!>          U is DOUBLE PRECISION array,
!>         dimension ( LDU, SMLSIZ ) if ICOMPQ = 1, and not referenced
!>         if ICOMPQ = 0. If ICOMPQ = 1, on exit, U contains the left
!>         singular vector matrices of all subproblems at the bottom
!>         level.
!> \endverbatim
!>
!> \param[in] LDU
!> \verbatim
!>          LDU is INTEGER, LDU = > N.
!>         The leading dimension of arrays U, VT, DIFL, DIFR, POLES,
!>         GIVNUM, and Z.
!> \endverbatim
!>
!> \param[out] VT
!> \verbatim
!>          VT is DOUBLE PRECISION array,
!>         dimension ( LDU, SMLSIZ+1 ) if ICOMPQ = 1, and not referenced
!>         if ICOMPQ = 0. If ICOMPQ = 1, on exit, VT**T contains the right
!>         singular vector matrices of all subproblems at the bottom
!>         level.
!> \endverbatim
!>
!> \param[out] K
!> \verbatim
!>          K is INTEGER array,
!>         dimension ( N ) if ICOMPQ = 1 and dimension 1 if ICOMPQ = 0.
!>         If ICOMPQ = 1, on exit, K(I) is the dimension of the I-th
!>         secular equation on the computation tree.
!> \endverbatim
!>
!> \param[out] DIFL
!> \verbatim
!>          DIFL is DOUBLE PRECISION array, dimension ( LDU, NLVL ),
!>         where NLVL = floor(log_2 (N/SMLSIZ))).
!> \endverbatim
!>
!> \param[out] DIFR
!> \verbatim
!>          DIFR is DOUBLE PRECISION array,
!>                  dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1 and
!>                  dimension ( N ) if ICOMPQ = 0.
!>         If ICOMPQ = 1, on exit, DIFL(1:N, I) and DIFR(1:N, 2 * I - 1)
!>         record distances between singular values on the I-th
!>         level and singular values on the (I -1)-th level, and
!>         DIFR(1:N, 2 * I ) contains the normalizing factors for
!>         the right singular vector matrix. See DLASD8 for details.
!> \endverbatim
!>
!> \param[out] Z
!> \verbatim
!>          Z is DOUBLE PRECISION array,
!>                  dimension ( LDU, NLVL ) if ICOMPQ = 1 and
!>                  dimension ( N ) if ICOMPQ = 0.
!>         The first K elements of Z(1, I) contain the components of
!>         the deflation-adjusted updating row vector for subproblems
!>         on the I-th level.
!> \endverbatim
!>
!> \param[out] POLES
!> \verbatim
!>          POLES is DOUBLE PRECISION array,
!>         dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1, and not referenced
!>         if ICOMPQ = 0. If ICOMPQ = 1, on exit, POLES(1, 2*I - 1) and
!>         POLES(1, 2*I) contain  the new and old singular values
!>         involved in the secular equations on the I-th level.
!> \endverbatim
!>
!> \param[out] GIVPTR
!> \verbatim
!>          GIVPTR is INTEGER array,
!>         dimension ( N ) if ICOMPQ = 1, and not referenced if
!>         ICOMPQ = 0. If ICOMPQ = 1, on exit, GIVPTR( I ) records
!>         the number of Givens rotations performed on the I-th
!>         problem on the computation tree.
!> \endverbatim
!>
!> \param[out] GIVCOL
!> \verbatim
!>          GIVCOL is INTEGER array,
!>         dimension ( LDGCOL, 2 * NLVL ) if ICOMPQ = 1, and not
!>         referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, for each I,
!>         GIVCOL(1, 2 *I - 1) and GIVCOL(1, 2 *I) record the locations
!>         of Givens rotations performed on the I-th level on the
!>         computation tree.
!> \endverbatim
!>
!> \param[in] LDGCOL
!> \verbatim
!>          LDGCOL is INTEGER, LDGCOL = > N.
!>         The leading dimension of arrays GIVCOL and PERM.
!> \endverbatim
!>
!> \param[out] PERM
!> \verbatim
!>          PERM is INTEGER array,
!>         dimension ( LDGCOL, NLVL ) if ICOMPQ = 1, and not referenced
!>         if ICOMPQ = 0. If ICOMPQ = 1, on exit, PERM(1, I) records
!>         permutations done on the I-th level of the computation tree.
!> \endverbatim
!>
!> \param[out] GIVNUM
!> \verbatim
!>          GIVNUM is DOUBLE PRECISION array,
!>         dimension ( LDU,  2 * NLVL ) if ICOMPQ = 1, and not
!>         referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, for each I,
!>         GIVNUM(1, 2 *I - 1) and GIVNUM(1, 2 *I) record the C- and S-
!>         values of Givens rotations performed on the I-th level on
!>         the computation tree.
!> \endverbatim
!>
!> \param[out] C
!> \verbatim
!>          C is DOUBLE PRECISION array,
!>         dimension ( N ) if ICOMPQ = 1, and dimension 1 if ICOMPQ = 0.
!>         If ICOMPQ = 1 and the I-th subproblem is not square, on exit,
!>         C( I ) contains the C-value of a Givens rotation related to
!>         the right null space of the I-th subproblem.
!> \endverbatim
!>
!> \param[out] S
!> \verbatim
!>          S is DOUBLE PRECISION array, dimension ( N ) if
!>         ICOMPQ = 1, and dimension 1 if ICOMPQ = 0. If ICOMPQ = 1
!>         and the I-th subproblem is not square, on exit, S( I )
!>         contains the S-value of a Givens rotation related to
!>         the right null space of the I-th subproblem.
!> \endverbatim
!>
!> \param[out] WORK
!> \verbatim
!>          WORK is DOUBLE PRECISION array, dimension
!>         (6 * N + (SMLSIZ + 1)*(SMLSIZ + 1)).
!> \endverbatim
!>
!> \param[out] IWORK
!> \verbatim
!>          IWORK is INTEGER array.
!>         Dimension must be at least (7 * N).
!> \endverbatim
!>
!> \param[out] INFO
!> \verbatim
!>          INFO is INTEGER
!>          = 0:  successful exit.
!>          < 0:  if INFO = -i, the i-th argument had an illegal value.
!>          > 0:  if INFO = 1, a singular value did not converge
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date November 2011
!
!> \ingroup auxOTHERauxiliary
!
!> \par Contributors:
!  ==================
!>
!>     Ming Gu and Huan Ren, Computer Science Division, University of
!>     California at Berkeley, USA
!>
!  =====================================================================
      SUBROUTINE DLASDA( ICOMPQ, SMLSIZ, N, SQRE, D, E, U, LDU, VT, K, &
     &                   DIFL, DIFR, Z, POLES, GIVPTR, GIVCOL, LDGCOL, &
     &                   PERM, GIVNUM, C, S, WORK, IWORK, INFO )
!
!  -- LAPACK auxiliary routine (version 3.4.0) --
!  -- LAPACK is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     November 2011
!
!     .. Scalar Arguments ..
      INTEGER            ICOMPQ, INFO, LDGCOL, LDU, N, SMLSIZ, SQRE
!     ..
!     .. Array Arguments ..
      INTEGER            GIVCOL( LDGCOL, * ), GIVPTR( * ), IWORK( * ), &
     &                   K( * ), PERM( LDGCOL, * )
      DOUBLE PRECISION   C( * ), D( * ), DIFL( LDU, * ), DIFR( LDU, * ), &
     &                   E( * ), GIVNUM( LDU, * ), POLES( LDU, * ), &
     &                   S( * ), U( LDU, * ), VT( LDU, * ), WORK( * ), &
     &                   Z( LDU, * )
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
!     ..
!     .. Local Scalars ..
      INTEGER            I, I1, IC, IDXQ, IDXQI, IM1, INODE, ITEMP, IWK, &
     &                   J, LF, LL, LVL, LVL2, M, NCC, ND, NDB1, NDIML, &
     &                   NDIMR, NL, NLF, NLP1, NLVL, NR, NRF, NRP1, NRU, &
     &                   NWORK1, NWORK2, SMLSZP, SQREI, VF, VFI, VL, VLI
      DOUBLE PRECISION   ALPHA, BETA
!     ..
!     .. External Subroutines ..
      EXTERNAL           DCOPY, DLASD6, DLASDQ, DLASDT, DLASET, XERBLA
!     ..
!     .. Executable Statements ..
!
!     Test the input parameters.
!
      INFO = 0
!
      IF( ( ICOMPQ.LT.0 ) .OR. ( ICOMPQ.GT.1 ) ) THEN
         INFO = -1
      ELSE IF( SMLSIZ.LT.3 ) THEN
         INFO = -2
      ELSE IF( N.LT.0 ) THEN
         INFO = -3
      ELSE IF( ( SQRE.LT.0 ) .OR. ( SQRE.GT.1 ) ) THEN
         INFO = -4
      ELSE IF( LDU.LT.( N+SQRE ) ) THEN
         INFO = -8
      ELSE IF( LDGCOL.LT.N ) THEN
         INFO = -17
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DLASDA', -INFO )
         RETURN
      END IF
!
      M = N + SQRE
!
!     If the input matrix is too small, call DLASDQ to find the SVD.
!
      IF( N.LE.SMLSIZ ) THEN
         IF( ICOMPQ.EQ.0 ) THEN
            CALL DLASDQ( 'U', SQRE, N, 0, 0, 0, D, E, VT, LDU, U, LDU, &
     &                   U, LDU, WORK, INFO )
         ELSE
            CALL DLASDQ( 'U', SQRE, N, M, N, 0, D, E, VT, LDU, U, LDU, &
     &                   U, LDU, WORK, INFO )
         END IF
         RETURN
      END IF
!
!     Book-keeping and  set up the computation tree.
!
      INODE = 1
      NDIML = INODE + N
      NDIMR = NDIML + N
      IDXQ = NDIMR + N
      IWK = IDXQ + N
!
      NCC = 0
      NRU = 0
!
      SMLSZP = SMLSIZ + 1
      VF = 1
      VL = VF + M
      NWORK1 = VL + M
      NWORK2 = NWORK1 + SMLSZP*SMLSZP
!
      CALL DLASDT( N, NLVL, ND, IWORK( INODE ), IWORK( NDIML ), &
     &             IWORK( NDIMR ), SMLSIZ )
!
!     for the nodes on bottom level of the tree, solve
!     their subproblems by DLASDQ.
!
      NDB1 = ( ND+1 ) / 2
      DO 30 I = NDB1, ND
!
!        IC : center row of each node
!        NL : number of rows of left  subproblem
!        NR : number of rows of right subproblem
!        NLF: starting row of the left   subproblem
!        NRF: starting row of the right  subproblem
!
         I1 = I - 1
         IC = IWORK( INODE+I1 )
         NL = IWORK( NDIML+I1 )
         NLP1 = NL + 1
         NR = IWORK( NDIMR+I1 )
         NLF = IC - NL
         NRF = IC + 1
         IDXQI = IDXQ + NLF - 2
         VFI = VF + NLF - 1
         VLI = VL + NLF - 1
         SQREI = 1
         IF( ICOMPQ.EQ.0 ) THEN
            CALL DLASET( 'A', NLP1, NLP1, ZERO, ONE, WORK( NWORK1 ), &
     &                   SMLSZP )
            CALL DLASDQ( 'U', SQREI, NL, NLP1, NRU, NCC, D( NLF ), &
     &                   E( NLF ), WORK( NWORK1 ), SMLSZP, &
     &                   WORK( NWORK2 ), NL, WORK( NWORK2 ), NL, &
     &                   WORK( NWORK2 ), INFO )
            ITEMP = NWORK1 + NL*SMLSZP
            CALL DCOPY( NLP1, WORK( NWORK1 ), 1, WORK( VFI ), 1 )
            CALL DCOPY( NLP1, WORK( ITEMP ), 1, WORK( VLI ), 1 )
         ELSE
            CALL DLASET( 'A', NL, NL, ZERO, ONE, U( NLF, 1 ), LDU )
            CALL DLASET( 'A', NLP1, NLP1, ZERO, ONE, VT( NLF, 1 ), LDU )
            CALL DLASDQ( 'U', SQREI, NL, NLP1, NL, NCC, D( NLF ), &
     &                   E( NLF ), VT( NLF, 1 ), LDU, U( NLF, 1 ), LDU, &
     &                   U( NLF, 1 ), LDU, WORK( NWORK1 ), INFO )
            CALL DCOPY( NLP1, VT( NLF, 1 ), 1, WORK( VFI ), 1 )
            CALL DCOPY( NLP1, VT( NLF, NLP1 ), 1, WORK( VLI ), 1 )
         END IF
         IF( INFO.NE.0 ) THEN
            RETURN
         END IF
         DO 10 J = 1, NL
            IWORK( IDXQI+J ) = J
   10    CONTINUE
         IF( ( I.EQ.ND ) .AND. ( SQRE.EQ.0 ) ) THEN
            SQREI = 0
         ELSE
            SQREI = 1
         END IF
         IDXQI = IDXQI + NLP1
         VFI = VFI + NLP1
         VLI = VLI + NLP1
         NRP1 = NR + SQREI
         IF( ICOMPQ.EQ.0 ) THEN
            CALL DLASET( 'A', NRP1, NRP1, ZERO, ONE, WORK( NWORK1 ), &
     &                   SMLSZP )
            CALL DLASDQ( 'U', SQREI, NR, NRP1, NRU, NCC, D( NRF ), &
     &                   E( NRF ), WORK( NWORK1 ), SMLSZP, &
     &                   WORK( NWORK2 ), NR, WORK( NWORK2 ), NR, &
     &                   WORK( NWORK2 ), INFO )
            ITEMP = NWORK1 + ( NRP1-1 )*SMLSZP
            CALL DCOPY( NRP1, WORK( NWORK1 ), 1, WORK( VFI ), 1 )
            CALL DCOPY( NRP1, WORK( ITEMP ), 1, WORK( VLI ), 1 )
         ELSE
            CALL DLASET( 'A', NR, NR, ZERO, ONE, U( NRF, 1 ), LDU )
            CALL DLASET( 'A', NRP1, NRP1, ZERO, ONE, VT( NRF, 1 ), LDU )
            CALL DLASDQ( 'U', SQREI, NR, NRP1, NR, NCC, D( NRF ), &
     &                   E( NRF ), VT( NRF, 1 ), LDU, U( NRF, 1 ), LDU, &
     &                   U( NRF, 1 ), LDU, WORK( NWORK1 ), INFO )
            CALL DCOPY( NRP1, VT( NRF, 1 ), 1, WORK( VFI ), 1 )
            CALL DCOPY( NRP1, VT( NRF, NRP1 ), 1, WORK( VLI ), 1 )
         END IF
         IF( INFO.NE.0 ) THEN
            RETURN
         END IF
         DO 20 J = 1, NR
            IWORK( IDXQI+J ) = J
   20    CONTINUE
   30 CONTINUE
!
!     Now conquer each subproblem bottom-up.
!
      J = 2**NLVL
      DO 50 LVL = NLVL, 1, -1
         LVL2 = LVL*2 - 1
!
!        Find the first node LF and last node LL on
!        the current level LVL.
!
         IF( LVL.EQ.1 ) THEN
            LF = 1
            LL = 1
         ELSE
            LF = 2**( LVL-1 )
            LL = 2*LF - 1
         END IF
         DO 40 I = LF, LL
            IM1 = I - 1
            IC = IWORK( INODE+IM1 )
            NL = IWORK( NDIML+IM1 )
            NR = IWORK( NDIMR+IM1 )
            NLF = IC - NL
            NRF = IC + 1
            IF( I.EQ.LL ) THEN
               SQREI = SQRE
            ELSE
               SQREI = 1
            END IF
            VFI = VF + NLF - 1
            VLI = VL + NLF - 1
            IDXQI = IDXQ + NLF - 1
            ALPHA = D( IC )
            BETA = E( IC )
            IF( ICOMPQ.EQ.0 ) THEN
               CALL DLASD6( ICOMPQ, NL, NR, SQREI, D( NLF ), &
     &                      WORK( VFI ), WORK( VLI ), ALPHA, BETA, &
     &                      IWORK( IDXQI ), PERM, GIVPTR( 1 ), GIVCOL, &
     &                      LDGCOL, GIVNUM, LDU, POLES, DIFL, DIFR, Z, &
     &                      K( 1 ), C( 1 ), S( 1 ), WORK( NWORK1 ), &
     &                      IWORK( IWK ), INFO )
            ELSE
               J = J - 1
               CALL DLASD6( ICOMPQ, NL, NR, SQREI, D( NLF ), &
     &                      WORK( VFI ), WORK( VLI ), ALPHA, BETA, &
     &                      IWORK( IDXQI ), PERM( NLF, LVL ), &
     &                      GIVPTR( J ), GIVCOL( NLF, LVL2 ), LDGCOL, &
     &                      GIVNUM( NLF, LVL2 ), LDU, &
     &                      POLES( NLF, LVL2 ), DIFL( NLF, LVL ), &
     &                      DIFR( NLF, LVL2 ), Z( NLF, LVL ), K( J ), &
     &                      C( J ), S( J ), WORK( NWORK1 ), &
     &                      IWORK( IWK ), INFO )
            END IF
            IF( INFO.NE.0 ) THEN
               RETURN
            END IF
   40    CONTINUE
   50 CONTINUE
!
      RETURN
!
!     End of DLASDA
!
      END