dlasd4.F90 Source File


Source Code

#include "ESMF_LapackBlas.inc"
!> \brief \b DLASD4
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!> \htmlonly
!> Download DLASD4 + dependencies
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasd4.f">
!> [TGZ]</a>
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasd4.f">
!> [ZIP]</a>
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasd4.f">
!> [TXT]</a>
!> \endhtmlonly
!
!  Definition:
!  ===========
!
!       SUBROUTINE DLASD4( N, I, D, Z, DELTA, RHO, SIGMA, WORK, INFO )
!
!       .. Scalar Arguments ..
!       INTEGER            I, INFO, N
!       DOUBLE PRECISION   RHO, SIGMA
!       ..
!       .. Array Arguments ..
!       DOUBLE PRECISION   D( * ), DELTA( * ), WORK( * ), Z( * )
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> This subroutine computes the square root of the I-th updated
!> eigenvalue of a positive symmetric rank-one modification to
!> a positive diagonal matrix whose entries are given as the squares
!> of the corresponding entries in the array d, and that
!>
!>        0 <= D(i) < D(j)  for  i < j
!>
!> and that RHO > 0. This is arranged by the calling routine, and is
!> no loss in generality.  The rank-one modified system is thus
!>
!>        diag( D ) * diag( D ) +  RHO * Z * Z_transpose.
!>
!> where we assume the Euclidean norm of Z is 1.
!>
!> The method consists of approximating the rational functions in the
!> secular equation by simpler interpolating rational functions.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>         The length of all arrays.
!> \endverbatim
!>
!> \param[in] I
!> \verbatim
!>          I is INTEGER
!>         The index of the eigenvalue to be computed.  1 <= I <= N.
!> \endverbatim
!>
!> \param[in] D
!> \verbatim
!>          D is DOUBLE PRECISION array, dimension ( N )
!>         The original eigenvalues.  It is assumed that they are in
!>         order, 0 <= D(I) < D(J)  for I < J.
!> \endverbatim
!>
!> \param[in] Z
!> \verbatim
!>          Z is DOUBLE PRECISION array, dimension ( N )
!>         The components of the updating vector.
!> \endverbatim
!>
!> \param[out] DELTA
!> \verbatim
!>          DELTA is DOUBLE PRECISION array, dimension ( N )
!>         If N .ne. 1, DELTA contains (D(j) - sigma_I) in its  j-th
!>         component.  If N = 1, then DELTA(1) = 1.  The vector DELTA
!>         contains the information necessary to construct the
!>         (singular) eigenvectors.
!> \endverbatim
!>
!> \param[in] RHO
!> \verbatim
!>          RHO is DOUBLE PRECISION
!>         The scalar in the symmetric updating formula.
!> \endverbatim
!>
!> \param[out] SIGMA
!> \verbatim
!>          SIGMA is DOUBLE PRECISION
!>         The computed sigma_I, the I-th updated eigenvalue.
!> \endverbatim
!>
!> \param[out] WORK
!> \verbatim
!>          WORK is DOUBLE PRECISION array, dimension ( N )
!>         If N .ne. 1, WORK contains (D(j) + sigma_I) in its  j-th
!>         component.  If N = 1, then WORK( 1 ) = 1.
!> \endverbatim
!>
!> \param[out] INFO
!> \verbatim
!>          INFO is INTEGER
!>         = 0:  successful exit
!>         > 0:  if INFO = 1, the updating process failed.
!> \endverbatim
!
!> \par Internal Parameters:
!  =========================
!>
!> \verbatim
!>  Logical variable ORGATI (origin-at-i?) is used for distinguishing
!>  whether D(i) or D(i+1) is treated as the origin.
!>
!>            ORGATI = .true.    origin at i
!>            ORGATI = .false.   origin at i+1
!>
!>  Logical variable SWTCH3 (switch-for-3-poles?) is for noting
!>  if we are working with THREE poles!
!>
!>  MAXIT is the maximum number of iterations allowed for each
!>  eigenvalue.
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date November 2011
!
!> \ingroup auxOTHERauxiliary
!
!> \par Contributors:
!  ==================
!>
!>     Ren-Cang Li, Computer Science Division, University of California
!>     at Berkeley, USA
!>
!  =====================================================================
      SUBROUTINE DLASD4( N, I, D, Z, DELTA, RHO, SIGMA, WORK, INFO )
!
!  -- LAPACK auxiliary routine (version 3.4.0) --
!  -- LAPACK is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     November 2011
!
!     .. Scalar Arguments ..
      INTEGER            I, INFO, N
      DOUBLE PRECISION   RHO, SIGMA
!     ..
!     .. Array Arguments ..
      DOUBLE PRECISION   D( * ), DELTA( * ), WORK( * ), Z( * )
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
      INTEGER            MAXIT
      PARAMETER          ( MAXIT = 64 )
      DOUBLE PRECISION   ZERO, ONE, TWO, THREE, FOUR, EIGHT, TEN
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0, &
     &                   THREE = 3.0D+0, FOUR = 4.0D+0, EIGHT = 8.0D+0, &
     &                   TEN = 10.0D+0 )
!     ..
!     .. Local Scalars ..
      LOGICAL            ORGATI, SWTCH, SWTCH3
      INTEGER            II, IIM1, IIP1, IP1, ITER, J, NITER
      DOUBLE PRECISION   A, B, C, DELSQ, DELSQ2, DPHI, DPSI, DTIIM, &
     &                   DTIIP, DTIPSQ, DTISQ, DTNSQ, DTNSQ1, DW, EPS, &
     &                   ERRETM, ETA, PHI, PREW, PSI, RHOINV, SG2LB, &
     &                   SG2UB, TAU, TEMP, TEMP1, TEMP2, W
!     ..
!     .. Local Arrays ..
      DOUBLE PRECISION   DD( 3 ), ZZ( 3 )
!     ..
!     .. External Subroutines ..
      EXTERNAL           DLAED6, DLASD5
!     ..
!     .. External Functions ..
      DOUBLE PRECISION   DLAMCH
      EXTERNAL           DLAMCH
!     ..
!     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX, MIN, SQRT
!     ..
!     .. Executable Statements ..
!
!     Since this routine is called in an inner loop, we do no argument
!     checking.
!
!     Quick return for N=1 and 2.
!
      INFO = 0
      IF( N.EQ.1 ) THEN
!
!        Presumably, I=1 upon entry
!
         SIGMA = SQRT( D( 1 )*D( 1 )+RHO*Z( 1 )*Z( 1 ) )
         DELTA( 1 ) = ONE
         WORK( 1 ) = ONE
         RETURN
      END IF
      IF( N.EQ.2 ) THEN
         CALL DLASD5( I, D, Z, DELTA, RHO, SIGMA, WORK )
         RETURN
      END IF
!
!     Compute machine epsilon
!
      EPS = DLAMCH( 'Epsilon' )
      RHOINV = ONE / RHO
!
!     The case I = N
!
      IF( I.EQ.N ) THEN
!
!        Initialize some basic variables
!
         II = N - 1
         NITER = 1
!
!        Calculate initial guess
!
         TEMP = RHO / TWO
!
!        If ||Z||_2 is not one, then TEMP should be set to
!        RHO * ||Z||_2^2 / TWO
!
         TEMP1 = TEMP / ( D( N )+SQRT( D( N )*D( N )+TEMP ) )
         DO 10 J = 1, N
            WORK( J ) = D( J ) + D( N ) + TEMP1
            DELTA( J ) = ( D( J )-D( N ) ) - TEMP1
   10    CONTINUE
!
         PSI = ZERO
         DO 20 J = 1, N - 2
            PSI = PSI + Z( J )*Z( J ) / ( DELTA( J )*WORK( J ) )
   20    CONTINUE
!
         C = RHOINV + PSI
         W = C + Z( II )*Z( II ) / ( DELTA( II )*WORK( II ) ) + &
     &       Z( N )*Z( N ) / ( DELTA( N )*WORK( N ) )
!
         IF( W.LE.ZERO ) THEN
            TEMP1 = SQRT( D( N )*D( N )+RHO )
            TEMP = Z( N-1 )*Z( N-1 ) / ( ( D( N-1 )+TEMP1 )* &
     &             ( D( N )-D( N-1 )+RHO / ( D( N )+TEMP1 ) ) ) + &
     &             Z( N )*Z( N ) / RHO
!
!           The following TAU is to approximate
!           SIGMA_n^2 - D( N )*D( N )
!
            IF( C.LE.TEMP ) THEN
               TAU = RHO
            ELSE
               DELSQ = ( D( N )-D( N-1 ) )*( D( N )+D( N-1 ) )
               A = -C*DELSQ + Z( N-1 )*Z( N-1 ) + Z( N )*Z( N )
               B = Z( N )*Z( N )*DELSQ
               IF( A.LT.ZERO ) THEN
                  TAU = TWO*B / ( SQRT( A*A+FOUR*B*C )-A )
               ELSE
                  TAU = ( A+SQRT( A*A+FOUR*B*C ) ) / ( TWO*C )
               END IF
            END IF
!
!           It can be proved that
!               D(N)^2+RHO/2 <= SIGMA_n^2 < D(N)^2+TAU <= D(N)^2+RHO
!
         ELSE
            DELSQ = ( D( N )-D( N-1 ) )*( D( N )+D( N-1 ) )
            A = -C*DELSQ + Z( N-1 )*Z( N-1 ) + Z( N )*Z( N )
            B = Z( N )*Z( N )*DELSQ
!
!           The following TAU is to approximate
!           SIGMA_n^2 - D( N )*D( N )
!
            IF( A.LT.ZERO ) THEN
               TAU = TWO*B / ( SQRT( A*A+FOUR*B*C )-A )
            ELSE
               TAU = ( A+SQRT( A*A+FOUR*B*C ) ) / ( TWO*C )
            END IF
!
!           It can be proved that
!           D(N)^2 < D(N)^2+TAU < SIGMA(N)^2 < D(N)^2+RHO/2
!
         END IF
!
!        The following ETA is to approximate SIGMA_n - D( N )
!
         ETA = TAU / ( D( N )+SQRT( D( N )*D( N )+TAU ) )
!
         SIGMA = D( N ) + ETA
         DO 30 J = 1, N
            DELTA( J ) = ( D( J )-D( I ) ) - ETA
            WORK( J ) = D( J ) + D( I ) + ETA
   30    CONTINUE
!
!        Evaluate PSI and the derivative DPSI
!
         DPSI = ZERO
         PSI = ZERO
         ERRETM = ZERO
         DO 40 J = 1, II
            TEMP = Z( J ) / ( DELTA( J )*WORK( J ) )
            PSI = PSI + Z( J )*TEMP
            DPSI = DPSI + TEMP*TEMP
            ERRETM = ERRETM + PSI
   40    CONTINUE
         ERRETM = ABS( ERRETM )
!
!        Evaluate PHI and the derivative DPHI
!
         TEMP = Z( N ) / ( DELTA( N )*WORK( N ) )
         PHI = Z( N )*TEMP
         DPHI = TEMP*TEMP
         ERRETM = EIGHT*( -PHI-PSI ) + ERRETM - PHI + RHOINV + &
     &            ABS( TAU )*( DPSI+DPHI )
!
         W = RHOINV + PHI + PSI
!
!        Test for convergence
!
         IF( ABS( W ).LE.EPS*ERRETM ) THEN
            GO TO 240
         END IF
!
!        Calculate the new step
!
         NITER = NITER + 1
         DTNSQ1 = WORK( N-1 )*DELTA( N-1 )
         DTNSQ = WORK( N )*DELTA( N )
         C = W - DTNSQ1*DPSI - DTNSQ*DPHI
         A = ( DTNSQ+DTNSQ1 )*W - DTNSQ*DTNSQ1*( DPSI+DPHI )
         B = DTNSQ*DTNSQ1*W
         IF( C.LT.ZERO ) &
     &      C = ABS( C )
         IF( C.EQ.ZERO ) THEN
            ETA = RHO - SIGMA*SIGMA
         ELSE IF( A.GE.ZERO ) THEN
            ETA = ( A+SQRT( ABS( A*A-FOUR*B*C ) ) ) / ( TWO*C )
         ELSE
            ETA = TWO*B / ( A-SQRT( ABS( A*A-FOUR*B*C ) ) )
         END IF
!
!        Note, eta should be positive if w is negative, and
!        eta should be negative otherwise. However,
!        if for some reason caused by roundoff, eta*w > 0,
!        we simply use one Newton step instead. This way
!        will guarantee eta*w < 0.
!
         IF( W*ETA.GT.ZERO ) &
     &      ETA = -W / ( DPSI+DPHI )
         TEMP = ETA - DTNSQ
         IF( TEMP.GT.RHO ) &
     &      ETA = RHO + DTNSQ
!
         TAU = TAU + ETA
         ETA = ETA / ( SIGMA+SQRT( ETA+SIGMA*SIGMA ) )
         DO 50 J = 1, N
            DELTA( J ) = DELTA( J ) - ETA
            WORK( J ) = WORK( J ) + ETA
   50    CONTINUE
!
         SIGMA = SIGMA + ETA
!
!        Evaluate PSI and the derivative DPSI
!
         DPSI = ZERO
         PSI = ZERO
         ERRETM = ZERO
         DO 60 J = 1, II
            TEMP = Z( J ) / ( WORK( J )*DELTA( J ) )
            PSI = PSI + Z( J )*TEMP
            DPSI = DPSI + TEMP*TEMP
            ERRETM = ERRETM + PSI
   60    CONTINUE
         ERRETM = ABS( ERRETM )
!
!        Evaluate PHI and the derivative DPHI
!
         TEMP = Z( N ) / ( WORK( N )*DELTA( N ) )
         PHI = Z( N )*TEMP
         DPHI = TEMP*TEMP
         ERRETM = EIGHT*( -PHI-PSI ) + ERRETM - PHI + RHOINV + &
     &            ABS( TAU )*( DPSI+DPHI )
!
         W = RHOINV + PHI + PSI
!
!        Main loop to update the values of the array   DELTA
!
         ITER = NITER + 1
!
         DO 90 NITER = ITER, MAXIT
!
!           Test for convergence
!
            IF( ABS( W ).LE.EPS*ERRETM ) THEN
               GO TO 240
            END IF
!
!           Calculate the new step
!
            DTNSQ1 = WORK( N-1 )*DELTA( N-1 )
            DTNSQ = WORK( N )*DELTA( N )
            C = W - DTNSQ1*DPSI - DTNSQ*DPHI
            A = ( DTNSQ+DTNSQ1 )*W - DTNSQ1*DTNSQ*( DPSI+DPHI )
            B = DTNSQ1*DTNSQ*W
            IF( A.GE.ZERO ) THEN
               ETA = ( A+SQRT( ABS( A*A-FOUR*B*C ) ) ) / ( TWO*C )
            ELSE
               ETA = TWO*B / ( A-SQRT( ABS( A*A-FOUR*B*C ) ) )
            END IF
!
!           Note, eta should be positive if w is negative, and
!           eta should be negative otherwise. However,
!           if for some reason caused by roundoff, eta*w > 0,
!           we simply use one Newton step instead. This way
!           will guarantee eta*w < 0.
!
            IF( W*ETA.GT.ZERO ) &
     &         ETA = -W / ( DPSI+DPHI )
            TEMP = ETA - DTNSQ
            IF( TEMP.LE.ZERO ) &
     &         ETA = ETA / TWO
!
            TAU = TAU + ETA
            ETA = ETA / ( SIGMA+SQRT( ETA+SIGMA*SIGMA ) )
            DO 70 J = 1, N
               DELTA( J ) = DELTA( J ) - ETA
               WORK( J ) = WORK( J ) + ETA
   70       CONTINUE
!
            SIGMA = SIGMA + ETA
!
!           Evaluate PSI and the derivative DPSI
!
            DPSI = ZERO
            PSI = ZERO
            ERRETM = ZERO
            DO 80 J = 1, II
               TEMP = Z( J ) / ( WORK( J )*DELTA( J ) )
               PSI = PSI + Z( J )*TEMP
               DPSI = DPSI + TEMP*TEMP
               ERRETM = ERRETM + PSI
   80       CONTINUE
            ERRETM = ABS( ERRETM )
!
!           Evaluate PHI and the derivative DPHI
!
            TEMP = Z( N ) / ( WORK( N )*DELTA( N ) )
            PHI = Z( N )*TEMP
            DPHI = TEMP*TEMP
            ERRETM = EIGHT*( -PHI-PSI ) + ERRETM - PHI + RHOINV + &
     &               ABS( TAU )*( DPSI+DPHI )
!
            W = RHOINV + PHI + PSI
   90    CONTINUE
!
!        Return with INFO = 1, NITER = MAXIT and not converged
!
         INFO = 1
         GO TO 240
!
!        End for the case I = N
!
      ELSE
!
!        The case for I < N
!
         NITER = 1
         IP1 = I + 1
!
!        Calculate initial guess
!
         DELSQ = ( D( IP1 )-D( I ) )*( D( IP1 )+D( I ) )
         DELSQ2 = DELSQ / TWO
         TEMP = DELSQ2 / ( D( I )+SQRT( D( I )*D( I )+DELSQ2 ) )
         DO 100 J = 1, N
            WORK( J ) = D( J ) + D( I ) + TEMP
            DELTA( J ) = ( D( J )-D( I ) ) - TEMP
  100    CONTINUE
!
         PSI = ZERO
         DO 110 J = 1, I - 1
            PSI = PSI + Z( J )*Z( J ) / ( WORK( J )*DELTA( J ) )
  110    CONTINUE
!
         PHI = ZERO
         DO 120 J = N, I + 2, -1
            PHI = PHI + Z( J )*Z( J ) / ( WORK( J )*DELTA( J ) )
  120    CONTINUE
         C = RHOINV + PSI + PHI
         W = C + Z( I )*Z( I ) / ( WORK( I )*DELTA( I ) ) + &
     &       Z( IP1 )*Z( IP1 ) / ( WORK( IP1 )*DELTA( IP1 ) )
!
         IF( W.GT.ZERO ) THEN
!
!           d(i)^2 < the ith sigma^2 < (d(i)^2+d(i+1)^2)/2
!
!           We choose d(i) as origin.
!
            ORGATI = .TRUE.
            SG2LB = ZERO
            SG2UB = DELSQ2
            A = C*DELSQ + Z( I )*Z( I ) + Z( IP1 )*Z( IP1 )
            B = Z( I )*Z( I )*DELSQ
            IF( A.GT.ZERO ) THEN
               TAU = TWO*B / ( A+SQRT( ABS( A*A-FOUR*B*C ) ) )
            ELSE
               TAU = ( A-SQRT( ABS( A*A-FOUR*B*C ) ) ) / ( TWO*C )
            END IF
!
!           TAU now is an estimation of SIGMA^2 - D( I )^2. The
!           following, however, is the corresponding estimation of
!           SIGMA - D( I ).
!
            ETA = TAU / ( D( I )+SQRT( D( I )*D( I )+TAU ) )
         ELSE
!
!           (d(i)^2+d(i+1)^2)/2 <= the ith sigma^2 < d(i+1)^2/2
!
!           We choose d(i+1) as origin.
!
            ORGATI = .FALSE.
            SG2LB = -DELSQ2
            SG2UB = ZERO
            A = C*DELSQ - Z( I )*Z( I ) - Z( IP1 )*Z( IP1 )
            B = Z( IP1 )*Z( IP1 )*DELSQ
            IF( A.LT.ZERO ) THEN
               TAU = TWO*B / ( A-SQRT( ABS( A*A+FOUR*B*C ) ) )
            ELSE
               TAU = -( A+SQRT( ABS( A*A+FOUR*B*C ) ) ) / ( TWO*C )
            END IF
!
!           TAU now is an estimation of SIGMA^2 - D( IP1 )^2. The
!           following, however, is the corresponding estimation of
!           SIGMA - D( IP1 ).
!
            ETA = TAU / ( D( IP1 )+SQRT( ABS( D( IP1 )*D( IP1 )+ &
     &            TAU ) ) )
         END IF
!
         IF( ORGATI ) THEN
            II = I
            SIGMA = D( I ) + ETA
            DO 130 J = 1, N
               WORK( J ) = D( J ) + D( I ) + ETA
               DELTA( J ) = ( D( J )-D( I ) ) - ETA
  130       CONTINUE
         ELSE
            II = I + 1
            SIGMA = D( IP1 ) + ETA
            DO 140 J = 1, N
               WORK( J ) = D( J ) + D( IP1 ) + ETA
               DELTA( J ) = ( D( J )-D( IP1 ) ) - ETA
  140       CONTINUE
         END IF
         IIM1 = II - 1
         IIP1 = II + 1
!
!        Evaluate PSI and the derivative DPSI
!
         DPSI = ZERO
         PSI = ZERO
         ERRETM = ZERO
         DO 150 J = 1, IIM1
            TEMP = Z( J ) / ( WORK( J )*DELTA( J ) )
            PSI = PSI + Z( J )*TEMP
            DPSI = DPSI + TEMP*TEMP
            ERRETM = ERRETM + PSI
  150    CONTINUE
         ERRETM = ABS( ERRETM )
!
!        Evaluate PHI and the derivative DPHI
!
         DPHI = ZERO
         PHI = ZERO
         DO 160 J = N, IIP1, -1
            TEMP = Z( J ) / ( WORK( J )*DELTA( J ) )
            PHI = PHI + Z( J )*TEMP
            DPHI = DPHI + TEMP*TEMP
            ERRETM = ERRETM + PHI
  160    CONTINUE
!
         W = RHOINV + PHI + PSI
!
!        W is the value of the secular function with
!        its ii-th element removed.
!
         SWTCH3 = .FALSE.
         IF( ORGATI ) THEN
            IF( W.LT.ZERO ) &
     &         SWTCH3 = .TRUE.
         ELSE
            IF( W.GT.ZERO ) &
     &         SWTCH3 = .TRUE.
         END IF
         IF( II.EQ.1 .OR. II.EQ.N ) &
     &      SWTCH3 = .FALSE.
!
         TEMP = Z( II ) / ( WORK( II )*DELTA( II ) )
         DW = DPSI + DPHI + TEMP*TEMP
         TEMP = Z( II )*TEMP
         W = W + TEMP
         ERRETM = EIGHT*( PHI-PSI ) + ERRETM + TWO*RHOINV + &
     &            THREE*ABS( TEMP ) + ABS( TAU )*DW
!
!        Test for convergence
!
         IF( ABS( W ).LE.EPS*ERRETM ) THEN
            GO TO 240
         END IF
!
         IF( W.LE.ZERO ) THEN
            SG2LB = MAX( SG2LB, TAU )
         ELSE
            SG2UB = MIN( SG2UB, TAU )
         END IF
!
!        Calculate the new step
!
         NITER = NITER + 1
         IF( .NOT.SWTCH3 ) THEN
            DTIPSQ = WORK( IP1 )*DELTA( IP1 )
            DTISQ = WORK( I )*DELTA( I )
            IF( ORGATI ) THEN
               C = W - DTIPSQ*DW + DELSQ*( Z( I ) / DTISQ )**2
            ELSE
               C = W - DTISQ*DW - DELSQ*( Z( IP1 ) / DTIPSQ )**2
            END IF
            A = ( DTIPSQ+DTISQ )*W - DTIPSQ*DTISQ*DW
            B = DTIPSQ*DTISQ*W
            IF( C.EQ.ZERO ) THEN
               IF( A.EQ.ZERO ) THEN
                  IF( ORGATI ) THEN
                     A = Z( I )*Z( I ) + DTIPSQ*DTIPSQ*( DPSI+DPHI )
                  ELSE
                     A = Z( IP1 )*Z( IP1 ) + DTISQ*DTISQ*( DPSI+DPHI )
                  END IF
               END IF
               ETA = B / A
            ELSE IF( A.LE.ZERO ) THEN
               ETA = ( A-SQRT( ABS( A*A-FOUR*B*C ) ) ) / ( TWO*C )
            ELSE
               ETA = TWO*B / ( A+SQRT( ABS( A*A-FOUR*B*C ) ) )
            END IF
         ELSE
!
!           Interpolation using THREE most relevant poles
!
            DTIIM = WORK( IIM1 )*DELTA( IIM1 )
            DTIIP = WORK( IIP1 )*DELTA( IIP1 )
            TEMP = RHOINV + PSI + PHI
            IF( ORGATI ) THEN
               TEMP1 = Z( IIM1 ) / DTIIM
               TEMP1 = TEMP1*TEMP1
               C = ( TEMP - DTIIP*( DPSI+DPHI ) ) - &
     &             ( D( IIM1 )-D( IIP1 ) )*( D( IIM1 )+D( IIP1 ) )*TEMP1
               ZZ( 1 ) = Z( IIM1 )*Z( IIM1 )
               IF( DPSI.LT.TEMP1 ) THEN
                  ZZ( 3 ) = DTIIP*DTIIP*DPHI
               ELSE
                  ZZ( 3 ) = DTIIP*DTIIP*( ( DPSI-TEMP1 )+DPHI )
               END IF
            ELSE
               TEMP1 = Z( IIP1 ) / DTIIP
               TEMP1 = TEMP1*TEMP1
               C = ( TEMP - DTIIM*( DPSI+DPHI ) ) - &
     &             ( D( IIP1 )-D( IIM1 ) )*( D( IIM1 )+D( IIP1 ) )*TEMP1
               IF( DPHI.LT.TEMP1 ) THEN
                  ZZ( 1 ) = DTIIM*DTIIM*DPSI
               ELSE
                  ZZ( 1 ) = DTIIM*DTIIM*( DPSI+( DPHI-TEMP1 ) )
               END IF
               ZZ( 3 ) = Z( IIP1 )*Z( IIP1 )
            END IF
            ZZ( 2 ) = Z( II )*Z( II )
            DD( 1 ) = DTIIM
            DD( 2 ) = DELTA( II )*WORK( II )
            DD( 3 ) = DTIIP
            CALL DLAED6( NITER, ORGATI, C, DD, ZZ, W, ETA, INFO )
            IF( INFO.NE.0 ) &
     &         GO TO 240
         END IF
!
!        Note, eta should be positive if w is negative, and
!        eta should be negative otherwise. However,
!        if for some reason caused by roundoff, eta*w > 0,
!        we simply use one Newton step instead. This way
!        will guarantee eta*w < 0.
!
         IF( W*ETA.GE.ZERO ) &
     &      ETA = -W / DW
         IF( ORGATI ) THEN
            TEMP1 = WORK( I )*DELTA( I )
            TEMP = ETA - TEMP1
         ELSE
            TEMP1 = WORK( IP1 )*DELTA( IP1 )
            TEMP = ETA - TEMP1
         END IF
         IF( TEMP.GT.SG2UB .OR. TEMP.LT.SG2LB ) THEN
            IF( W.LT.ZERO ) THEN
               ETA = ( SG2UB-TAU ) / TWO
            ELSE
               ETA = ( SG2LB-TAU ) / TWO
            END IF
         END IF
!
         TAU = TAU + ETA
         ETA = ETA / ( SIGMA+SQRT( SIGMA*SIGMA+ETA ) )
!
         PREW = W
!
         SIGMA = SIGMA + ETA
         DO 170 J = 1, N
            WORK( J ) = WORK( J ) + ETA
            DELTA( J ) = DELTA( J ) - ETA
  170    CONTINUE
!
!        Evaluate PSI and the derivative DPSI
!
         DPSI = ZERO
         PSI = ZERO
         ERRETM = ZERO
         DO 180 J = 1, IIM1
            TEMP = Z( J ) / ( WORK( J )*DELTA( J ) )
            PSI = PSI + Z( J )*TEMP
            DPSI = DPSI + TEMP*TEMP
            ERRETM = ERRETM + PSI
  180    CONTINUE
         ERRETM = ABS( ERRETM )
!
!        Evaluate PHI and the derivative DPHI
!
         DPHI = ZERO
         PHI = ZERO
         DO 190 J = N, IIP1, -1
            TEMP = Z( J ) / ( WORK( J )*DELTA( J ) )
            PHI = PHI + Z( J )*TEMP
            DPHI = DPHI + TEMP*TEMP
            ERRETM = ERRETM + PHI
  190    CONTINUE
!
         TEMP = Z( II ) / ( WORK( II )*DELTA( II ) )
         DW = DPSI + DPHI + TEMP*TEMP
         TEMP = Z( II )*TEMP
         W = RHOINV + PHI + PSI + TEMP
         ERRETM = EIGHT*( PHI-PSI ) + ERRETM + TWO*RHOINV + &
     &            THREE*ABS( TEMP ) + ABS( TAU )*DW
!
         IF( W.LE.ZERO ) THEN
            SG2LB = MAX( SG2LB, TAU )
         ELSE
            SG2UB = MIN( SG2UB, TAU )
         END IF
!
         SWTCH = .FALSE.
         IF( ORGATI ) THEN
            IF( -W.GT.ABS( PREW ) / TEN ) &
     &         SWTCH = .TRUE.
         ELSE
            IF( W.GT.ABS( PREW ) / TEN ) &
     &         SWTCH = .TRUE.
         END IF
!
!        Main loop to update the values of the array   DELTA and WORK
!
         ITER = NITER + 1
!
         DO 230 NITER = ITER, MAXIT
!
!           Test for convergence
!
            IF( ABS( W ).LE.EPS*ERRETM ) THEN
               GO TO 240
            END IF
!
!           Calculate the new step
!
            IF( .NOT.SWTCH3 ) THEN
               DTIPSQ = WORK( IP1 )*DELTA( IP1 )
               DTISQ = WORK( I )*DELTA( I )
               IF( .NOT.SWTCH ) THEN
                  IF( ORGATI ) THEN
                     C = W - DTIPSQ*DW + DELSQ*( Z( I ) / DTISQ )**2
                  ELSE
                     C = W - DTISQ*DW - DELSQ*( Z( IP1 ) / DTIPSQ )**2
                  END IF
               ELSE
                  TEMP = Z( II ) / ( WORK( II )*DELTA( II ) )
                  IF( ORGATI ) THEN
                     DPSI = DPSI + TEMP*TEMP
                  ELSE
                     DPHI = DPHI + TEMP*TEMP
                  END IF
                  C = W - DTISQ*DPSI - DTIPSQ*DPHI
               END IF
               A = ( DTIPSQ+DTISQ )*W - DTIPSQ*DTISQ*DW
               B = DTIPSQ*DTISQ*W
               IF( C.EQ.ZERO ) THEN
                  IF( A.EQ.ZERO ) THEN
                     IF( .NOT.SWTCH ) THEN
                        IF( ORGATI ) THEN
                           A = Z( I )*Z( I ) + DTIPSQ*DTIPSQ* &
     &                         ( DPSI+DPHI )
                        ELSE
                           A = Z( IP1 )*Z( IP1 ) + &
     &                         DTISQ*DTISQ*( DPSI+DPHI )
                        END IF
                     ELSE
                        A = DTISQ*DTISQ*DPSI + DTIPSQ*DTIPSQ*DPHI
                     END IF
                  END IF
                  ETA = B / A
               ELSE IF( A.LE.ZERO ) THEN
                  ETA = ( A-SQRT( ABS( A*A-FOUR*B*C ) ) ) / ( TWO*C )
               ELSE
                  ETA = TWO*B / ( A+SQRT( ABS( A*A-FOUR*B*C ) ) )
               END IF
            ELSE
!
!              Interpolation using THREE most relevant poles
!
               DTIIM = WORK( IIM1 )*DELTA( IIM1 )
               DTIIP = WORK( IIP1 )*DELTA( IIP1 )
               TEMP = RHOINV + PSI + PHI
               IF( SWTCH ) THEN
                  C = TEMP - DTIIM*DPSI - DTIIP*DPHI
                  ZZ( 1 ) = DTIIM*DTIIM*DPSI
                  ZZ( 3 ) = DTIIP*DTIIP*DPHI
               ELSE
                  IF( ORGATI ) THEN
                     TEMP1 = Z( IIM1 ) / DTIIM
                     TEMP1 = TEMP1*TEMP1
                     TEMP2 = ( D( IIM1 )-D( IIP1 ) )* &
     &                       ( D( IIM1 )+D( IIP1 ) )*TEMP1
                     C = TEMP - DTIIP*( DPSI+DPHI ) - TEMP2
                     ZZ( 1 ) = Z( IIM1 )*Z( IIM1 )
                     IF( DPSI.LT.TEMP1 ) THEN
                        ZZ( 3 ) = DTIIP*DTIIP*DPHI
                     ELSE
                        ZZ( 3 ) = DTIIP*DTIIP*( ( DPSI-TEMP1 )+DPHI )
                     END IF
                  ELSE
                     TEMP1 = Z( IIP1 ) / DTIIP
                     TEMP1 = TEMP1*TEMP1
                     TEMP2 = ( D( IIP1 )-D( IIM1 ) )* &
     &                       ( D( IIM1 )+D( IIP1 ) )*TEMP1
                     C = TEMP - DTIIM*( DPSI+DPHI ) - TEMP2
                     IF( DPHI.LT.TEMP1 ) THEN
                        ZZ( 1 ) = DTIIM*DTIIM*DPSI
                     ELSE
                        ZZ( 1 ) = DTIIM*DTIIM*( DPSI+( DPHI-TEMP1 ) )
                     END IF
                     ZZ( 3 ) = Z( IIP1 )*Z( IIP1 )
                  END IF
               END IF
               DD( 1 ) = DTIIM
               DD( 2 ) = DELTA( II )*WORK( II )
               DD( 3 ) = DTIIP
               CALL DLAED6( NITER, ORGATI, C, DD, ZZ, W, ETA, INFO )
               IF( INFO.NE.0 ) &
     &            GO TO 240
            END IF
!
!           Note, eta should be positive if w is negative, and
!           eta should be negative otherwise. However,
!           if for some reason caused by roundoff, eta*w > 0,
!           we simply use one Newton step instead. This way
!           will guarantee eta*w < 0.
!
            IF( W*ETA.GE.ZERO ) &
     &         ETA = -W / DW
            IF( ORGATI ) THEN
               TEMP1 = WORK( I )*DELTA( I )
               TEMP = ETA - TEMP1
            ELSE
               TEMP1 = WORK( IP1 )*DELTA( IP1 )
               TEMP = ETA - TEMP1
            END IF
            IF( TEMP.GT.SG2UB .OR. TEMP.LT.SG2LB ) THEN
               IF( W.LT.ZERO ) THEN
                  ETA = ( SG2UB-TAU ) / TWO
               ELSE
                  ETA = ( SG2LB-TAU ) / TWO
               END IF
            END IF
!
            TAU = TAU + ETA
            ETA = ETA / ( SIGMA+SQRT( SIGMA*SIGMA+ETA ) )
!
            SIGMA = SIGMA + ETA
            DO 200 J = 1, N
               WORK( J ) = WORK( J ) + ETA
               DELTA( J ) = DELTA( J ) - ETA
  200       CONTINUE
!
            PREW = W
!
!           Evaluate PSI and the derivative DPSI
!
            DPSI = ZERO
            PSI = ZERO
            ERRETM = ZERO
            DO 210 J = 1, IIM1
               TEMP = Z( J ) / ( WORK( J )*DELTA( J ) )
               PSI = PSI + Z( J )*TEMP
               DPSI = DPSI + TEMP*TEMP
               ERRETM = ERRETM + PSI
  210       CONTINUE
            ERRETM = ABS( ERRETM )
!
!           Evaluate PHI and the derivative DPHI
!
            DPHI = ZERO
            PHI = ZERO
            DO 220 J = N, IIP1, -1
               TEMP = Z( J ) / ( WORK( J )*DELTA( J ) )
               PHI = PHI + Z( J )*TEMP
               DPHI = DPHI + TEMP*TEMP
               ERRETM = ERRETM + PHI
  220       CONTINUE
!
            TEMP = Z( II ) / ( WORK( II )*DELTA( II ) )
            DW = DPSI + DPHI + TEMP*TEMP
            TEMP = Z( II )*TEMP
            W = RHOINV + PHI + PSI + TEMP
            ERRETM = EIGHT*( PHI-PSI ) + ERRETM + TWO*RHOINV + &
     &               THREE*ABS( TEMP ) + ABS( TAU )*DW
            IF( W*PREW.GT.ZERO .AND. ABS( W ).GT.ABS( PREW ) / TEN ) &
     &         SWTCH = .NOT.SWTCH
!
            IF( W.LE.ZERO ) THEN
               SG2LB = MAX( SG2LB, TAU )
            ELSE
               SG2UB = MIN( SG2UB, TAU )
            END IF
!
  230    CONTINUE
!
!        Return with INFO = 1, NITER = MAXIT and not converged
!
         INFO = 1
!
      END IF
!
  240 CONTINUE
      RETURN
!
!     End of DLASD4
!
      END