dlarzt.F90 Source File


Source Code

#include "ESMF_LapackBlas.inc"
!> \brief \b DLARZT
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!> \htmlonly
!> Download DLARZT + dependencies
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlarzt.f">
!> [TGZ]</a>
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlarzt.f">
!> [ZIP]</a>
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlarzt.f">
!> [TXT]</a>
!> \endhtmlonly
!
!  Definition:
!  ===========
!
!       SUBROUTINE DLARZT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT )
!
!       .. Scalar Arguments ..
!       CHARACTER          DIRECT, STOREV
!       INTEGER            K, LDT, LDV, N
!       ..
!       .. Array Arguments ..
!       DOUBLE PRECISION   T( LDT, * ), TAU( * ), V( LDV, * )
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> DLARZT forms the triangular factor T of a real block reflector
!> H of order > n, which is defined as a product of k elementary
!> reflectors.
!>
!> If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular;
!>
!> If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular.
!>
!> If STOREV = 'C', the vector which defines the elementary reflector
!> H(i) is stored in the i-th column of the array V, and
!>
!>    H  =  I - V * T * V**T
!>
!> If STOREV = 'R', the vector which defines the elementary reflector
!> H(i) is stored in the i-th row of the array V, and
!>
!>    H  =  I - V**T * T * V
!>
!> Currently, only STOREV = 'R' and DIRECT = 'B' are supported.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] DIRECT
!> \verbatim
!>          DIRECT is CHARACTER*1
!>          Specifies the order in which the elementary reflectors are
!>          multiplied to form the block reflector:
!>          = 'F': H = H(1) H(2) . . . H(k) (Forward, not supported yet)
!>          = 'B': H = H(k) . . . H(2) H(1) (Backward)
!> \endverbatim
!>
!> \param[in] STOREV
!> \verbatim
!>          STOREV is CHARACTER*1
!>          Specifies how the vectors which define the elementary
!>          reflectors are stored (see also Further Details):
!>          = 'C': columnwise                        (not supported yet)
!>          = 'R': rowwise
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>          The order of the block reflector H. N >= 0.
!> \endverbatim
!>
!> \param[in] K
!> \verbatim
!>          K is INTEGER
!>          The order of the triangular factor T (= the number of
!>          elementary reflectors). K >= 1.
!> \endverbatim
!>
!> \param[in,out] V
!> \verbatim
!>          V is DOUBLE PRECISION array, dimension
!>                               (LDV,K) if STOREV = 'C'
!>                               (LDV,N) if STOREV = 'R'
!>          The matrix V. See further details.
!> \endverbatim
!>
!> \param[in] LDV
!> \verbatim
!>          LDV is INTEGER
!>          The leading dimension of the array V.
!>          If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K.
!> \endverbatim
!>
!> \param[in] TAU
!> \verbatim
!>          TAU is DOUBLE PRECISION array, dimension (K)
!>          TAU(i) must contain the scalar factor of the elementary
!>          reflector H(i).
!> \endverbatim
!>
!> \param[out] T
!> \verbatim
!>          T is DOUBLE PRECISION array, dimension (LDT,K)
!>          The k by k triangular factor T of the block reflector.
!>          If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is
!>          lower triangular. The rest of the array is not used.
!> \endverbatim
!>
!> \param[in] LDT
!> \verbatim
!>          LDT is INTEGER
!>          The leading dimension of the array T. LDT >= K.
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date November 2011
!
!> \ingroup doubleOTHERcomputational
!
!> \par Contributors:
!  ==================
!>
!>    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  The shape of the matrix V and the storage of the vectors which define
!>  the H(i) is best illustrated by the following example with n = 5 and
!>  k = 3. The elements equal to 1 are not stored; the corresponding
!>  array elements are modified but restored on exit. The rest of the
!>  array is not used.
!>
!>  DIRECT = 'F' and STOREV = 'C':         DIRECT = 'F' and STOREV = 'R':
!>
!>                                              ______V_____
!>         ( v1 v2 v3 )                        /            \
!>         ( v1 v2 v3 )                      ( v1 v1 v1 v1 v1 . . . . 1 )
!>     V = ( v1 v2 v3 )                      ( v2 v2 v2 v2 v2 . . . 1   )
!>         ( v1 v2 v3 )                      ( v3 v3 v3 v3 v3 . . 1     )
!>         ( v1 v2 v3 )
!>            .  .  .
!>            .  .  .
!>            1  .  .
!>               1  .
!>                  1
!>
!>  DIRECT = 'B' and STOREV = 'C':         DIRECT = 'B' and STOREV = 'R':
!>
!>                                                        ______V_____
!>            1                                          /            \
!>            .  1                           ( 1 . . . . v1 v1 v1 v1 v1 )
!>            .  .  1                        ( . 1 . . . v2 v2 v2 v2 v2 )
!>            .  .  .                        ( . . 1 . . v3 v3 v3 v3 v3 )
!>            .  .  .
!>         ( v1 v2 v3 )
!>         ( v1 v2 v3 )
!>     V = ( v1 v2 v3 )
!>         ( v1 v2 v3 )
!>         ( v1 v2 v3 )
!> \endverbatim
!>
!  =====================================================================
      SUBROUTINE DLARZT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT )
!
!  -- LAPACK computational routine (version 3.4.0) --
!  -- LAPACK is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     November 2011
!
!     .. Scalar Arguments ..
      CHARACTER          DIRECT, STOREV
      INTEGER            K, LDT, LDV, N
!     ..
!     .. Array Arguments ..
      DOUBLE PRECISION   T( LDT, * ), TAU( * ), V( LDV, * )
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
      DOUBLE PRECISION   ZERO
      PARAMETER          ( ZERO = 0.0D+0 )
!     ..
!     .. Local Scalars ..
      INTEGER            I, INFO, J
!     ..
!     .. External Subroutines ..
      EXTERNAL           DGEMV, DTRMV, XERBLA
!     ..
!     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
!     ..
!     .. Executable Statements ..
!
!     Check for currently supported options
!
      INFO = 0
      IF( .NOT.LSAME( DIRECT, 'B' ) ) THEN
         INFO = -1
      ELSE IF( .NOT.LSAME( STOREV, 'R' ) ) THEN
         INFO = -2
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DLARZT', -INFO )
         RETURN
      END IF
!
      DO 20 I = K, 1, -1
         IF( TAU( I ).EQ.ZERO ) THEN
!
!           H(i)  =  I
!
            DO 10 J = I, K
               T( J, I ) = ZERO
   10       CONTINUE
         ELSE
!
!           general case
!
            IF( I.LT.K ) THEN
!
!              T(i+1:k,i) = - tau(i) * V(i+1:k,1:n) * V(i,1:n)**T
!
               CALL DGEMV( 'No transpose', K-I, N, -TAU( I ), &
     &                     V( I+1, 1 ), LDV, V( I, 1 ), LDV, ZERO, &
     &                     T( I+1, I ), 1 )
!
!              T(i+1:k,i) = T(i+1:k,i+1:k) * T(i+1:k,i)
!
               CALL DTRMV( 'Lower', 'No transpose', 'Non-unit', K-I, &
     &                     T( I+1, I+1 ), LDT, T( I+1, I ), 1 )
            END IF
            T( I, I ) = TAU( I )
         END IF
   20 CONTINUE
      RETURN
!
!     End of DLARZT
!
      END