dlarft.F90 Source File


Source Code

#include "ESMF_LapackBlas.inc"
!> \brief \b DLARFT
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!> \htmlonly
!> Download DLARFT + dependencies
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlarft.f">
!> [TGZ]</a>
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlarft.f">
!> [ZIP]</a>
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlarft.f">
!> [TXT]</a>
!> \endhtmlonly
!
!  Definition:
!  ===========
!
!       SUBROUTINE DLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT )
!
!       .. Scalar Arguments ..
!       CHARACTER          DIRECT, STOREV
!       INTEGER            K, LDT, LDV, N
!       ..
!       .. Array Arguments ..
!       DOUBLE PRECISION   T( LDT, * ), TAU( * ), V( LDV, * )
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> DLARFT forms the triangular factor T of a real block reflector H
!> of order n, which is defined as a product of k elementary reflectors.
!>
!> If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular;
!>
!> If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular.
!>
!> If STOREV = 'C', the vector which defines the elementary reflector
!> H(i) is stored in the i-th column of the array V, and
!>
!>    H  =  I - V * T * V**T
!>
!> If STOREV = 'R', the vector which defines the elementary reflector
!> H(i) is stored in the i-th row of the array V, and
!>
!>    H  =  I - V**T * T * V
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] DIRECT
!> \verbatim
!>          DIRECT is CHARACTER*1
!>          Specifies the order in which the elementary reflectors are
!>          multiplied to form the block reflector:
!>          = 'F': H = H(1) H(2) . . . H(k) (Forward)
!>          = 'B': H = H(k) . . . H(2) H(1) (Backward)
!> \endverbatim
!>
!> \param[in] STOREV
!> \verbatim
!>          STOREV is CHARACTER*1
!>          Specifies how the vectors which define the elementary
!>          reflectors are stored (see also Further Details):
!>          = 'C': columnwise
!>          = 'R': rowwise
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>          The order of the block reflector H. N >= 0.
!> \endverbatim
!>
!> \param[in] K
!> \verbatim
!>          K is INTEGER
!>          The order of the triangular factor T (= the number of
!>          elementary reflectors). K >= 1.
!> \endverbatim
!>
!> \param[in,out] V
!> \verbatim
!>          V is DOUBLE PRECISION array, dimension
!>                               (LDV,K) if STOREV = 'C'
!>                               (LDV,N) if STOREV = 'R'
!>          The matrix V. See further details.
!> \endverbatim
!>
!> \param[in] LDV
!> \verbatim
!>          LDV is INTEGER
!>          The leading dimension of the array V.
!>          If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K.
!> \endverbatim
!>
!> \param[in] TAU
!> \verbatim
!>          TAU is DOUBLE PRECISION array, dimension (K)
!>          TAU(i) must contain the scalar factor of the elementary
!>          reflector H(i).
!> \endverbatim
!>
!> \param[out] T
!> \verbatim
!>          T is DOUBLE PRECISION array, dimension (LDT,K)
!>          The k by k triangular factor T of the block reflector.
!>          If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is
!>          lower triangular. The rest of the array is not used.
!> \endverbatim
!>
!> \param[in] LDT
!> \verbatim
!>          LDT is INTEGER
!>          The leading dimension of the array T. LDT >= K.
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date November 2011
!
!> \ingroup doubleOTHERauxiliary
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  The shape of the matrix V and the storage of the vectors which define
!>  the H(i) is best illustrated by the following example with n = 5 and
!>  k = 3. The elements equal to 1 are not stored; the corresponding
!>  array elements are modified but restored on exit. The rest of the
!>  array is not used.
!>
!>  DIRECT = 'F' and STOREV = 'C':         DIRECT = 'F' and STOREV = 'R':
!>
!>               V = (  1       )                 V = (  1 v1 v1 v1 v1 )
!>                   ( v1  1    )                     (     1 v2 v2 v2 )
!>                   ( v1 v2  1 )                     (        1 v3 v3 )
!>                   ( v1 v2 v3 )
!>                   ( v1 v2 v3 )
!>
!>  DIRECT = 'B' and STOREV = 'C':         DIRECT = 'B' and STOREV = 'R':
!>
!>               V = ( v1 v2 v3 )                 V = ( v1 v1  1       )
!>                   ( v1 v2 v3 )                     ( v2 v2 v2  1    )
!>                   (  1 v2 v3 )                     ( v3 v3 v3 v3  1 )
!>                   (     1 v3 )
!>                   (        1 )
!> \endverbatim
!>
!  =====================================================================
      SUBROUTINE DLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT )
!
!  -- LAPACK auxiliary routine (version 3.4.0) --
!  -- LAPACK is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     November 2011
!
!     .. Scalar Arguments ..
      CHARACTER          DIRECT, STOREV
      INTEGER            K, LDT, LDV, N
!     ..
!     .. Array Arguments ..
      DOUBLE PRECISION   T( LDT, * ), TAU( * ), V( LDV, * )
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
      DOUBLE PRECISION   ONE, ZERO
      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
!     ..
!     .. Local Scalars ..
      INTEGER            I, J, PREVLASTV, LASTV
      DOUBLE PRECISION   VII
!     ..
!     .. External Subroutines ..
      EXTERNAL           DGEMV, DTRMV
!     ..
!     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
!     ..
!     .. Executable Statements ..
!
!     Quick return if possible
!
      IF( N.EQ.0 ) &
     &   RETURN
!
      IF( LSAME( DIRECT, 'F' ) ) THEN
         PREVLASTV = N
         DO 20 I = 1, K
            PREVLASTV = MAX( I, PREVLASTV )
            IF( TAU( I ).EQ.ZERO ) THEN
!
!              H(i)  =  I
!
               DO 10 J = 1, I
                  T( J, I ) = ZERO
   10          CONTINUE
            ELSE
!
!              general case
!
               VII = V( I, I )
               V( I, I ) = ONE
               IF( LSAME( STOREV, 'C' ) ) THEN
!                 Skip any trailing zeros.
                  DO LASTV = N, I+1, -1
                     IF( V( LASTV, I ).NE.ZERO ) EXIT
                  END DO
                  J = MIN( LASTV, PREVLASTV )
!
!                 T(1:i-1,i) := - tau(i) * V(i:j,1:i-1)**T * V(i:j,i)
!
                  CALL DGEMV( 'Transpose', J-I+1, I-1, -TAU( I ), &
     &                        V( I, 1 ), LDV, V( I, I ), 1, ZERO, &
     &                        T( 1, I ), 1 )
               ELSE
!                 Skip any trailing zeros.
                  DO LASTV = N, I+1, -1
                     IF( V( I, LASTV ).NE.ZERO ) EXIT
                  END DO
                  J = MIN( LASTV, PREVLASTV )
!
!                 T(1:i-1,i) := - tau(i) * V(1:i-1,i:j) * V(i,i:j)**T
!
                  CALL DGEMV( 'No transpose', I-1, J-I+1, -TAU( I ), &
     &                        V( 1, I ), LDV, V( I, I ), LDV, ZERO, &
     &                        T( 1, I ), 1 )
               END IF
               V( I, I ) = VII
!
!              T(1:i-1,i) := T(1:i-1,1:i-1) * T(1:i-1,i)
!
               CALL DTRMV( 'Upper', 'No transpose', 'Non-unit', I-1, T, &
     &                     LDT, T( 1, I ), 1 )
               T( I, I ) = TAU( I )
               IF( I.GT.1 ) THEN
                  PREVLASTV = MAX( PREVLASTV, LASTV )
               ELSE
                  PREVLASTV = LASTV
               END IF
            END IF
   20    CONTINUE
      ELSE
         PREVLASTV = 1
         DO 40 I = K, 1, -1
            IF( TAU( I ).EQ.ZERO ) THEN
!
!              H(i)  =  I
!
               DO 30 J = I, K
                  T( J, I ) = ZERO
   30          CONTINUE
            ELSE
!
!              general case
!
               IF( I.LT.K ) THEN
                  IF( LSAME( STOREV, 'C' ) ) THEN
                     VII = V( N-K+I, I )
                     V( N-K+I, I ) = ONE
!                    Skip any leading zeros.
                     DO LASTV = 1, I-1
                        IF( V( LASTV, I ).NE.ZERO ) EXIT
                     END DO
                     J = MAX( LASTV, PREVLASTV )
!
!                    T(i+1:k,i) :=
!                            - tau(i) * V(j:n-k+i,i+1:k)**T * V(j:n-k+i,i)
!
                     CALL DGEMV( 'Transpose', N-K+I-J+1, K-I, -TAU( I ), &
     &                           V( J, I+1 ), LDV, V( J, I ), 1, ZERO, &
     &                           T( I+1, I ), 1 )
                     V( N-K+I, I ) = VII
                  ELSE
                     VII = V( I, N-K+I )
                     V( I, N-K+I ) = ONE
!                    Skip any leading zeros.
                     DO LASTV = 1, I-1
                        IF( V( I, LASTV ).NE.ZERO ) EXIT
                     END DO
                     J = MAX( LASTV, PREVLASTV )
!
!                    T(i+1:k,i) :=
!                            - tau(i) * V(i+1:k,j:n-k+i) * V(i,j:n-k+i)**T
!
                     CALL DGEMV( 'No transpose', K-I, N-K+I-J+1, &
     &                    -TAU( I ), V( I+1, J ), LDV, V( I, J ), LDV, &
     &                    ZERO, T( I+1, I ), 1 )
                     V( I, N-K+I ) = VII
                  END IF
!
!                 T(i+1:k,i) := T(i+1:k,i+1:k) * T(i+1:k,i)
!
                  CALL DTRMV( 'Lower', 'No transpose', 'Non-unit', K-I, &
     &                        T( I+1, I+1 ), LDT, T( I+1, I ), 1 )
                  IF( I.GT.1 ) THEN
                     PREVLASTV = MIN( PREVLASTV, LASTV )
                  ELSE
                     PREVLASTV = LASTV
                  END IF
               END IF
               T( I, I ) = TAU( I )
            END IF
   40    CONTINUE
      END IF
      RETURN
!
!     End of DLARFT
!
      END