dlarfg.F90 Source File


Source Code

#include "ESMF_LapackBlas.inc"
!> \brief \b DLARFG
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!> \htmlonly
!> Download DLARFG + dependencies
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlarfg.f">
!> [TGZ]</a>
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlarfg.f">
!> [ZIP]</a>
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlarfg.f">
!> [TXT]</a>
!> \endhtmlonly
!
!  Definition:
!  ===========
!
!       SUBROUTINE DLARFG( N, ALPHA, X, INCX, TAU )
!
!       .. Scalar Arguments ..
!       INTEGER            INCX, N
!       DOUBLE PRECISION   ALPHA, TAU
!       ..
!       .. Array Arguments ..
!       DOUBLE PRECISION   X( * )
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> DLARFG generates a real elementary reflector H of order n, such
!> that
!>
!>       H * ( alpha ) = ( beta ),   H**T * H = I.
!>           (   x   )   (   0  )
!>
!> where alpha and beta are scalars, and x is an (n-1)-element real
!> vector. H is represented in the form
!>
!>       H = I - tau * ( 1 ) * ( 1 v**T ) ,
!>                     ( v )
!>
!> where tau is a real scalar and v is a real (n-1)-element
!> vector.
!>
!> If the elements of x are all zero, then tau = 0 and H is taken to be
!> the unit matrix.
!>
!> Otherwise  1 <= tau <= 2.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>          The order of the elementary reflector.
!> \endverbatim
!>
!> \param[in,out] ALPHA
!> \verbatim
!>          ALPHA is DOUBLE PRECISION
!>          On entry, the value alpha.
!>          On exit, it is overwritten with the value beta.
!> \endverbatim
!>
!> \param[in,out] X
!> \verbatim
!>          X is DOUBLE PRECISION array, dimension
!>                         (1+(N-2)*abs(INCX))
!>          On entry, the vector x.
!>          On exit, it is overwritten with the vector v.
!> \endverbatim
!>
!> \param[in] INCX
!> \verbatim
!>          INCX is INTEGER
!>          The increment between elements of X. INCX > 0.
!> \endverbatim
!>
!> \param[out] TAU
!> \verbatim
!>          TAU is DOUBLE PRECISION
!>          The value tau.
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date November 2011
!
!> \ingroup doubleOTHERauxiliary
!
!  =====================================================================
      SUBROUTINE DLARFG( N, ALPHA, X, INCX, TAU )
!
!  -- LAPACK auxiliary routine (version 3.4.0) --
!  -- LAPACK is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     November 2011
!
!     .. Scalar Arguments ..
      INTEGER            INCX, N
      DOUBLE PRECISION   ALPHA, TAU
!     ..
!     .. Array Arguments ..
      DOUBLE PRECISION   X( * )
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
      DOUBLE PRECISION   ONE, ZERO
      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
!     ..
!     .. Local Scalars ..
      INTEGER            J, KNT
      DOUBLE PRECISION   BETA, RSAFMN, SAFMIN, XNORM
!     ..
!     .. External Functions ..
      DOUBLE PRECISION   DLAMCH, DLAPY2, DNRM2
      EXTERNAL           DLAMCH, DLAPY2, DNRM2
!     ..
!     .. Intrinsic Functions ..
      INTRINSIC          ABS, SIGN
!     ..
!     .. External Subroutines ..
      EXTERNAL           DSCAL
!     ..
!     .. Executable Statements ..
!
      IF( N.LE.1 ) THEN
         TAU = ZERO
         RETURN
      END IF
!
      XNORM = DNRM2( N-1, X, INCX )
!
      IF( XNORM.EQ.ZERO ) THEN
!
!        H  =  I
!
         TAU = ZERO
      ELSE
!
!        general case
!
         BETA = -SIGN( DLAPY2( ALPHA, XNORM ), ALPHA )
         SAFMIN = DLAMCH( 'S' ) / DLAMCH( 'E' )
         KNT = 0
         IF( ABS( BETA ).LT.SAFMIN ) THEN
!
!           XNORM, BETA may be inaccurate; scale X and recompute them
!
            RSAFMN = ONE / SAFMIN
   10       CONTINUE
            KNT = KNT + 1
            CALL DSCAL( N-1, RSAFMN, X, INCX )
            BETA = BETA*RSAFMN
            ALPHA = ALPHA*RSAFMN
            IF( ABS( BETA ).LT.SAFMIN ) &
     &         GO TO 10
!
!           New BETA is at most 1, at least SAFMIN
!
            XNORM = DNRM2( N-1, X, INCX )
            BETA = -SIGN( DLAPY2( ALPHA, XNORM ), ALPHA )
         END IF
         TAU = ( BETA-ALPHA ) / BETA
         CALL DSCAL( N-1, ONE / ( ALPHA-BETA ), X, INCX )
!
!        If ALPHA is subnormal, it may lose relative accuracy
!
         DO 20 J = 1, KNT
            BETA = BETA*SAFMIN
 20      CONTINUE
         ALPHA = BETA
      END IF
!
      RETURN
!
!     End of DLARFG
!
      END