dlaqr4.F90 Source File


Source Code

#include "ESMF_LapackBlas.inc"
!> \brief \b DLAQR4 computes the eigenvalues of a Hessenberg matrix, and optionally the matrices from the Schur decomposition.
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!> \htmlonly
!> Download DLAQR4 + dependencies
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaqr4.f">
!> [TGZ]</a>
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaqr4.f">
!> [ZIP]</a>
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaqr4.f">
!> [TXT]</a>
!> \endhtmlonly
!
!  Definition:
!  ===========
!
!       SUBROUTINE DLAQR4( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI,
!                          ILOZ, IHIZ, Z, LDZ, WORK, LWORK, INFO )
!
!       .. Scalar Arguments ..
!       INTEGER            IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, LWORK, N
!       LOGICAL            WANTT, WANTZ
!       ..
!       .. Array Arguments ..
!       DOUBLE PRECISION   H( LDH, * ), WI( * ), WORK( * ), WR( * ),
!      $                   Z( LDZ, * )
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!>    DLAQR4 implements one level of recursion for DLAQR0.
!>    It is a complete implementation of the small bulge multi-shift
!>    QR algorithm.  It may be called by DLAQR0 and, for large enough
!>    deflation window size, it may be called by DLAQR3.  This
!>    subroutine is identical to DLAQR0 except that it calls DLAQR2
!>    instead of DLAQR3.
!>
!>    DLAQR4 computes the eigenvalues of a Hessenberg matrix H
!>    and, optionally, the matrices T and Z from the Schur decomposition
!>    H = Z T Z**T, where T is an upper quasi-triangular matrix (the
!>    Schur form), and Z is the orthogonal matrix of Schur vectors.
!>
!>    Optionally Z may be postmultiplied into an input orthogonal
!>    matrix Q so that this routine can give the Schur factorization
!>    of a matrix A which has been reduced to the Hessenberg form H
!>    by the orthogonal matrix Q:  A = Q*H*Q**T = (QZ)*T*(QZ)**T.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] WANTT
!> \verbatim
!>          WANTT is LOGICAL
!>          = .TRUE. : the full Schur form T is required;
!>          = .FALSE.: only eigenvalues are required.
!> \endverbatim
!>
!> \param[in] WANTZ
!> \verbatim
!>          WANTZ is LOGICAL
!>          = .TRUE. : the matrix of Schur vectors Z is required;
!>          = .FALSE.: Schur vectors are not required.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           The order of the matrix H.  N .GE. 0.
!> \endverbatim
!>
!> \param[in] ILO
!> \verbatim
!>          ILO is INTEGER
!> \endverbatim
!>
!> \param[in] IHI
!> \verbatim
!>          IHI is INTEGER
!>           It is assumed that H is already upper triangular in rows
!>           and columns 1:ILO-1 and IHI+1:N and, if ILO.GT.1,
!>           H(ILO,ILO-1) is zero. ILO and IHI are normally set by a
!>           previous call to DGEBAL, and then passed to DGEHRD when the
!>           matrix output by DGEBAL is reduced to Hessenberg form.
!>           Otherwise, ILO and IHI should be set to 1 and N,
!>           respectively.  If N.GT.0, then 1.LE.ILO.LE.IHI.LE.N.
!>           If N = 0, then ILO = 1 and IHI = 0.
!> \endverbatim
!>
!> \param[in,out] H
!> \verbatim
!>          H is DOUBLE PRECISION array, dimension (LDH,N)
!>           On entry, the upper Hessenberg matrix H.
!>           On exit, if INFO = 0 and WANTT is .TRUE., then H contains
!>           the upper quasi-triangular matrix T from the Schur
!>           decomposition (the Schur form); 2-by-2 diagonal blocks
!>           (corresponding to complex conjugate pairs of eigenvalues)
!>           are returned in standard form, with H(i,i) = H(i+1,i+1)
!>           and H(i+1,i)*H(i,i+1).LT.0. If INFO = 0 and WANTT is
!>           .FALSE., then the contents of H are unspecified on exit.
!>           (The output value of H when INFO.GT.0 is given under the
!>           description of INFO below.)
!>
!>           This subroutine may explicitly set H(i,j) = 0 for i.GT.j and
!>           j = 1, 2, ... ILO-1 or j = IHI+1, IHI+2, ... N.
!> \endverbatim
!>
!> \param[in] LDH
!> \verbatim
!>          LDH is INTEGER
!>           The leading dimension of the array H. LDH .GE. max(1,N).
!> \endverbatim
!>
!> \param[out] WR
!> \verbatim
!>          WR is DOUBLE PRECISION array, dimension (IHI)
!> \endverbatim
!>
!> \param[out] WI
!> \verbatim
!>          WI is DOUBLE PRECISION array, dimension (IHI)
!>           The real and imaginary parts, respectively, of the computed
!>           eigenvalues of H(ILO:IHI,ILO:IHI) are stored in WR(ILO:IHI)
!>           and WI(ILO:IHI). If two eigenvalues are computed as a
!>           complex conjugate pair, they are stored in consecutive
!>           elements of WR and WI, say the i-th and (i+1)th, with
!>           WI(i) .GT. 0 and WI(i+1) .LT. 0. If WANTT is .TRUE., then
!>           the eigenvalues are stored in the same order as on the
!>           diagonal of the Schur form returned in H, with
!>           WR(i) = H(i,i) and, if H(i:i+1,i:i+1) is a 2-by-2 diagonal
!>           block, WI(i) = sqrt(-H(i+1,i)*H(i,i+1)) and
!>           WI(i+1) = -WI(i).
!> \endverbatim
!>
!> \param[in] ILOZ
!> \verbatim
!>          ILOZ is INTEGER
!> \endverbatim
!>
!> \param[in] IHIZ
!> \verbatim
!>          IHIZ is INTEGER
!>           Specify the rows of Z to which transformations must be
!>           applied if WANTZ is .TRUE..
!>           1 .LE. ILOZ .LE. ILO; IHI .LE. IHIZ .LE. N.
!> \endverbatim
!>
!> \param[in,out] Z
!> \verbatim
!>          Z is DOUBLE PRECISION array, dimension (LDZ,IHI)
!>           If WANTZ is .FALSE., then Z is not referenced.
!>           If WANTZ is .TRUE., then Z(ILO:IHI,ILOZ:IHIZ) is
!>           replaced by Z(ILO:IHI,ILOZ:IHIZ)*U where U is the
!>           orthogonal Schur factor of H(ILO:IHI,ILO:IHI).
!>           (The output value of Z when INFO.GT.0 is given under
!>           the description of INFO below.)
!> \endverbatim
!>
!> \param[in] LDZ
!> \verbatim
!>          LDZ is INTEGER
!>           The leading dimension of the array Z.  if WANTZ is .TRUE.
!>           then LDZ.GE.MAX(1,IHIZ).  Otherwize, LDZ.GE.1.
!> \endverbatim
!>
!> \param[out] WORK
!> \verbatim
!>          WORK is DOUBLE PRECISION array, dimension LWORK
!>           On exit, if LWORK = -1, WORK(1) returns an estimate of
!>           the optimal value for LWORK.
!> \endverbatim
!>
!> \param[in] LWORK
!> \verbatim
!>          LWORK is INTEGER
!>           The dimension of the array WORK.  LWORK .GE. max(1,N)
!>           is sufficient, but LWORK typically as large as 6*N may
!>           be required for optimal performance.  A workspace query
!>           to determine the optimal workspace size is recommended.
!>
!>           If LWORK = -1, then DLAQR4 does a workspace query.
!>           In this case, DLAQR4 checks the input parameters and
!>           estimates the optimal workspace size for the given
!>           values of N, ILO and IHI.  The estimate is returned
!>           in WORK(1).  No error message related to LWORK is
!>           issued by XERBLA.  Neither H nor Z are accessed.
!> \endverbatim
!>
!> \param[out] INFO
!> \verbatim
!>          INFO is INTEGER
!>             =  0:  successful exit
!>           .GT. 0:  if INFO = i, DLAQR4 failed to compute all of
!>                the eigenvalues.  Elements 1:ilo-1 and i+1:n of WR
!>                and WI contain those eigenvalues which have been
!>                successfully computed.  (Failures are rare.)
!>
!>                If INFO .GT. 0 and WANT is .FALSE., then on exit,
!>                the remaining unconverged eigenvalues are the eigen-
!>                values of the upper Hessenberg matrix rows and
!>                columns ILO through INFO of the final, output
!>                value of H.
!>
!>                If INFO .GT. 0 and WANTT is .TRUE., then on exit
!>
!>           (*)  (initial value of H)*U  = U*(final value of H)
!>
!>                where U is a orthogonal matrix.  The final
!>                value of  H is upper Hessenberg and triangular in
!>                rows and columns INFO+1 through IHI.
!>
!>                If INFO .GT. 0 and WANTZ is .TRUE., then on exit
!>
!>                  (final value of Z(ILO:IHI,ILOZ:IHIZ)
!>                   =  (initial value of Z(ILO:IHI,ILOZ:IHIZ)*U
!>
!>                where U is the orthogonal matrix in (*) (regard-
!>                less of the value of WANTT.)
!>
!>                If INFO .GT. 0 and WANTZ is .FALSE., then Z is not
!>                accessed.
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup doubleOTHERauxiliary
!
!> \par Contributors:
!  ==================
!>
!>       Karen Braman and Ralph Byers, Department of Mathematics,
!>       University of Kansas, USA
!
!> \par References:
!  ================
!>
!>       K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
!>       Algorithm Part I: Maintaining Well Focused Shifts, and Level 3
!>       Performance, SIAM Journal of Matrix Analysis, volume 23, pages
!>       929--947, 2002.
!> \n
!>       K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
!>       Algorithm Part II: Aggressive Early Deflation, SIAM Journal
!>       of Matrix Analysis, volume 23, pages 948--973, 2002.
!>
!  =====================================================================
      SUBROUTINE DLAQR4( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI, &
                         ILOZ, IHIZ, Z, LDZ, WORK, LWORK, INFO )
!
!  -- LAPACK auxiliary routine (version 3.7.0) --
!  -- LAPACK is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
      INTEGER            IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, LWORK, N
      LOGICAL            WANTT, WANTZ
!     ..
!     .. Array Arguments ..
      DOUBLE PRECISION   H( LDH, * ), WI( * ), WORK( * ), WR( * ), &
                         Z( LDZ, * )
!     ..
!
!  ================================================================
!     .. Parameters ..
!
!     ==== Matrices of order NTINY or smaller must be processed by
!     .    DLAHQR because of insufficient subdiagonal scratch space.
!     .    (This is a hard limit.) ====
      INTEGER            NTINY
      PARAMETER          ( NTINY = 11 )
!
!     ==== Exceptional deflation windows:  try to cure rare
!     .    slow convergence by varying the size of the
!     .    deflation window after KEXNW iterations. ====
      INTEGER            KEXNW
      PARAMETER          ( KEXNW = 5 )
!
!     ==== Exceptional shifts: try to cure rare slow convergence
!     .    with ad-hoc exceptional shifts every KEXSH iterations.
!     .    ====
      INTEGER            KEXSH
      PARAMETER          ( KEXSH = 6 )
!
!     ==== The constants WILK1 and WILK2 are used to form the
!     .    exceptional shifts. ====
      DOUBLE PRECISION   WILK1, WILK2
      PARAMETER          ( WILK1 = 0.75d0, WILK2 = -0.4375d0 )
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0d0, ONE = 1.0d0 )
!     ..
!     .. Local Scalars ..
      DOUBLE PRECISION   AA, BB, CC, CS, DD, SN, SS, SWAP
      INTEGER            I, INF, IT, ITMAX, K, KACC22, KBOT, KDU, KS, &
                         KT, KTOP, KU, KV, KWH, KWTOP, KWV, LD, LS, &
                         LWKOPT, NDEC, NDFL, NH, NHO, NIBBLE, NMIN, NS, &
                         NSMAX, NSR, NVE, NW, NWMAX, NWR, NWUPBD
      LOGICAL            SORTED
      CHARACTER          JBCMPZ*2
!     ..
!     .. External Functions ..
      INTEGER            ILAENV
      EXTERNAL           ILAENV
!     ..
!     .. Local Arrays ..
      DOUBLE PRECISION   ZDUM( 1, 1 )
!     ..
!     .. External Subroutines ..
      EXTERNAL           DLACPY, DLAHQR, DLANV2, DLAQR2, DLAQR5
!     ..
!     .. Intrinsic Functions ..
      INTRINSIC          ABS, DBLE, INT, MAX, MIN, MOD
!     ..
!     .. Executable Statements ..
      INFO = 0
!
!     ==== Quick return for N = 0: nothing to do. ====
!
      IF( N.EQ.0 ) THEN
         WORK( 1 ) = ONE
         RETURN
      END IF
!
      IF( N.LE.NTINY ) THEN
!
!        ==== Tiny matrices must use DLAHQR. ====
!
         LWKOPT = 1
         IF( LWORK.NE.-1 ) &
            CALL DLAHQR( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI, &
                         ILOZ, IHIZ, Z, LDZ, INFO )
      ELSE
!
!        ==== Use small bulge multi-shift QR with aggressive early
!        .    deflation on larger-than-tiny matrices. ====
!
!        ==== Hope for the best. ====
!
         INFO = 0
!
!        ==== Set up job flags for ILAENV. ====
!
         IF( WANTT ) THEN
            JBCMPZ( 1: 1 ) = 'S'
         ELSE
            JBCMPZ( 1: 1 ) = 'E'
         END IF
         IF( WANTZ ) THEN
            JBCMPZ( 2: 2 ) = 'V'
         ELSE
            JBCMPZ( 2: 2 ) = 'N'
         END IF
!
!        ==== NWR = recommended deflation window size.  At this
!        .    point,  N .GT. NTINY = 11, so there is enough
!        .    subdiagonal workspace for NWR.GE.2 as required.
!        .    (In fact, there is enough subdiagonal space for
!        .    NWR.GE.3.) ====
!
         NWR = ILAENV( 13, 'DLAQR4', JBCMPZ, N, ILO, IHI, LWORK )
         NWR = MAX( 2, NWR )
         NWR = MIN( IHI-ILO+1, ( N-1 ) / 3, NWR )
!
!        ==== NSR = recommended number of simultaneous shifts.
!        .    At this point N .GT. NTINY = 11, so there is at
!        .    enough subdiagonal workspace for NSR to be even
!        .    and greater than or equal to two as required. ====
!
         NSR = ILAENV( 15, 'DLAQR4', JBCMPZ, N, ILO, IHI, LWORK )
         NSR = MIN( NSR, ( N+6 ) / 9, IHI-ILO )
         NSR = MAX( 2, NSR-MOD( NSR, 2 ) )
!
!        ==== Estimate optimal workspace ====
!
!        ==== Workspace query call to DLAQR2 ====
!
         CALL DLAQR2( WANTT, WANTZ, N, ILO, IHI, NWR+1, H, LDH, ILOZ, &
                      IHIZ, Z, LDZ, LS, LD, WR, WI, H, LDH, N, H, LDH, &
                      N, H, LDH, WORK, -1 )
!
!        ==== Optimal workspace = MAX(DLAQR5, DLAQR2) ====
!
         LWKOPT = MAX( 3*NSR / 2, INT( WORK( 1 ) ) )
!
!        ==== Quick return in case of workspace query. ====
!
         IF( LWORK.EQ.-1 ) THEN
            WORK( 1 ) = DBLE( LWKOPT )
            RETURN
         END IF
!
!        ==== DLAHQR/DLAQR0 crossover point ====
!
         NMIN = ILAENV( 12, 'DLAQR4', JBCMPZ, N, ILO, IHI, LWORK )
         NMIN = MAX( NTINY, NMIN )
!
!        ==== Nibble crossover point ====
!
         NIBBLE = ILAENV( 14, 'DLAQR4', JBCMPZ, N, ILO, IHI, LWORK )
         NIBBLE = MAX( 0, NIBBLE )
!
!        ==== Accumulate reflections during ttswp?  Use block
!        .    2-by-2 structure during matrix-matrix multiply? ====
!
         KACC22 = ILAENV( 16, 'DLAQR4', JBCMPZ, N, ILO, IHI, LWORK )
         KACC22 = MAX( 0, KACC22 )
         KACC22 = MIN( 2, KACC22 )
!
!        ==== NWMAX = the largest possible deflation window for
!        .    which there is sufficient workspace. ====
!
         NWMAX = MIN( ( N-1 ) / 3, LWORK / 2 )
         NW = NWMAX
!
!        ==== NSMAX = the Largest number of simultaneous shifts
!        .    for which there is sufficient workspace. ====
!
         NSMAX = MIN( ( N+6 ) / 9, 2*LWORK / 3 )
         NSMAX = NSMAX - MOD( NSMAX, 2 )
!
!        ==== NDFL: an iteration count restarted at deflation. ====
!
         NDFL = 1
!
!        ==== ITMAX = iteration limit ====
!
         ITMAX = MAX( 30, 2*KEXSH )*MAX( 10, ( IHI-ILO+1 ) )
!
!        ==== Last row and column in the active block ====
!
         KBOT = IHI
!
!        ==== Main Loop ====
!
         DO 80 IT = 1, ITMAX
!
!           ==== Done when KBOT falls below ILO ====
!
            IF( KBOT.LT.ILO ) &
               GO TO 90
!
!           ==== Locate active block ====
!
            DO 10 K = KBOT, ILO + 1, -1
               IF( H( K, K-1 ).EQ.ZERO ) &
                  GO TO 20
   10       CONTINUE
            K = ILO
   20       CONTINUE
            KTOP = K
!
!           ==== Select deflation window size:
!           .    Typical Case:
!           .      If possible and advisable, nibble the entire
!           .      active block.  If not, use size MIN(NWR,NWMAX)
!           .      or MIN(NWR+1,NWMAX) depending upon which has
!           .      the smaller corresponding subdiagonal entry
!           .      (a heuristic).
!           .
!           .    Exceptional Case:
!           .      If there have been no deflations in KEXNW or
!           .      more iterations, then vary the deflation window
!           .      size.   At first, because, larger windows are,
!           .      in general, more powerful than smaller ones,
!           .      rapidly increase the window to the maximum possible.
!           .      Then, gradually reduce the window size. ====
!
            NH = KBOT - KTOP + 1
            NWUPBD = MIN( NH, NWMAX )
            IF( NDFL.LT.KEXNW ) THEN
               NW = MIN( NWUPBD, NWR )
            ELSE
               NW = MIN( NWUPBD, 2*NW )
            END IF
            IF( NW.LT.NWMAX ) THEN
               IF( NW.GE.NH-1 ) THEN
                  NW = NH
               ELSE
                  KWTOP = KBOT - NW + 1
                  IF( ABS( H( KWTOP, KWTOP-1 ) ).GT. &
                      ABS( H( KWTOP-1, KWTOP-2 ) ) )NW = NW + 1
               END IF
            END IF
            IF( NDFL.LT.KEXNW ) THEN
               NDEC = -1
            ELSE IF( NDEC.GE.0 .OR. NW.GE.NWUPBD ) THEN
               NDEC = NDEC + 1
               IF( NW-NDEC.LT.2 ) &
                  NDEC = 0
               NW = NW - NDEC
            END IF
!
!           ==== Aggressive early deflation:
!           .    split workspace under the subdiagonal into
!           .      - an nw-by-nw work array V in the lower
!           .        left-hand-corner,
!           .      - an NW-by-at-least-NW-but-more-is-better
!           .        (NW-by-NHO) horizontal work array along
!           .        the bottom edge,
!           .      - an at-least-NW-but-more-is-better (NHV-by-NW)
!           .        vertical work array along the left-hand-edge.
!           .        ====
!
            KV = N - NW + 1
            KT = NW + 1
            NHO = ( N-NW-1 ) - KT + 1
            KWV = NW + 2
            NVE = ( N-NW ) - KWV + 1
!
!           ==== Aggressive early deflation ====
!
            CALL DLAQR2( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ, &
                         IHIZ, Z, LDZ, LS, LD, WR, WI, H( KV, 1 ), LDH, &
                         NHO, H( KV, KT ), LDH, NVE, H( KWV, 1 ), LDH, &
                         WORK, LWORK )
!
!           ==== Adjust KBOT accounting for new deflations. ====
!
            KBOT = KBOT - LD
!
!           ==== KS points to the shifts. ====
!
            KS = KBOT - LS + 1
!
!           ==== Skip an expensive QR sweep if there is a (partly
!           .    heuristic) reason to expect that many eigenvalues
!           .    will deflate without it.  Here, the QR sweep is
!           .    skipped if many eigenvalues have just been deflated
!           .    or if the remaining active block is small.
!
            IF( ( LD.EQ.0 ) .OR. ( ( 100*LD.LE.NW*NIBBLE ) .AND. ( KBOT- &
                KTOP+1.GT.MIN( NMIN, NWMAX ) ) ) ) THEN
!
!              ==== NS = nominal number of simultaneous shifts.
!              .    This may be lowered (slightly) if DLAQR2
!              .    did not provide that many shifts. ====
!
               NS = MIN( NSMAX, NSR, MAX( 2, KBOT-KTOP ) )
               NS = NS - MOD( NS, 2 )
!
!              ==== If there have been no deflations
!              .    in a multiple of KEXSH iterations,
!              .    then try exceptional shifts.
!              .    Otherwise use shifts provided by
!              .    DLAQR2 above or from the eigenvalues
!              .    of a trailing principal submatrix. ====
!
               IF( MOD( NDFL, KEXSH ).EQ.0 ) THEN
                  KS = KBOT - NS + 1
                  DO 30 I = KBOT, MAX( KS+1, KTOP+2 ), -2
                     SS = ABS( H( I, I-1 ) ) + ABS( H( I-1, I-2 ) )
                     AA = WILK1*SS + H( I, I )
                     BB = SS
                     CC = WILK2*SS
                     DD = AA
                     CALL DLANV2( AA, BB, CC, DD, WR( I-1 ), WI( I-1 ), &
                                  WR( I ), WI( I ), CS, SN )
   30             CONTINUE
                  IF( KS.EQ.KTOP ) THEN
                     WR( KS+1 ) = H( KS+1, KS+1 )
                     WI( KS+1 ) = ZERO
                     WR( KS ) = WR( KS+1 )
                     WI( KS ) = WI( KS+1 )
                  END IF
               ELSE
!
!                 ==== Got NS/2 or fewer shifts? Use DLAHQR
!                 .    on a trailing principal submatrix to
!                 .    get more. (Since NS.LE.NSMAX.LE.(N+6)/9,
!                 .    there is enough space below the subdiagonal
!                 .    to fit an NS-by-NS scratch array.) ====
!
                  IF( KBOT-KS+1.LE.NS / 2 ) THEN
                     KS = KBOT - NS + 1
                     KT = N - NS + 1
                     CALL DLACPY( 'A', NS, NS, H( KS, KS ), LDH, &
                                  H( KT, 1 ), LDH )
                     CALL DLAHQR( .false., .false., NS, 1, NS, &
                                  H( KT, 1 ), LDH, WR( KS ), WI( KS ), &
                                  1, 1, ZDUM, 1, INF )
                     KS = KS + INF
!
!                    ==== In case of a rare QR failure use
!                    .    eigenvalues of the trailing 2-by-2
!                    .    principal submatrix.  ====
!
                     IF( KS.GE.KBOT ) THEN
                        AA = H( KBOT-1, KBOT-1 )
                        CC = H( KBOT, KBOT-1 )
                        BB = H( KBOT-1, KBOT )
                        DD = H( KBOT, KBOT )
                        CALL DLANV2( AA, BB, CC, DD, WR( KBOT-1 ), &
                                     WI( KBOT-1 ), WR( KBOT ), &
                                     WI( KBOT ), CS, SN )
                        KS = KBOT - 1
                     END IF
                  END IF
!
                  IF( KBOT-KS+1.GT.NS ) THEN
!
!                    ==== Sort the shifts (Helps a little)
!                    .    Bubble sort keeps complex conjugate
!                    .    pairs together. ====
!
                     SORTED = .false.
                     DO 50 K = KBOT, KS + 1, -1
                        IF( SORTED ) &
                           GO TO 60
                        SORTED = .true.
                        DO 40 I = KS, K - 1
                           IF( ABS( WR( I ) )+ABS( WI( I ) ).LT. &
                               ABS( WR( I+1 ) )+ABS( WI( I+1 ) ) ) THEN
                              SORTED = .false.
!
                              SWAP = WR( I )
                              WR( I ) = WR( I+1 )
                              WR( I+1 ) = SWAP
!
                              SWAP = WI( I )
                              WI( I ) = WI( I+1 )
                              WI( I+1 ) = SWAP
                           END IF
   40                   CONTINUE
   50                CONTINUE
   60                CONTINUE
                  END IF
!
!                 ==== Shuffle shifts into pairs of real shifts
!                 .    and pairs of complex conjugate shifts
!                 .    assuming complex conjugate shifts are
!                 .    already adjacent to one another. (Yes,
!                 .    they are.)  ====
!
                  DO 70 I = KBOT, KS + 2, -2
                     IF( WI( I ).NE.-WI( I-1 ) ) THEN
!
                        SWAP = WR( I )
                        WR( I ) = WR( I-1 )
                        WR( I-1 ) = WR( I-2 )
                        WR( I-2 ) = SWAP
!
                        SWAP = WI( I )
                        WI( I ) = WI( I-1 )
                        WI( I-1 ) = WI( I-2 )
                        WI( I-2 ) = SWAP
                     END IF
   70             CONTINUE
               END IF
!
!              ==== If there are only two shifts and both are
!              .    real, then use only one.  ====
!
               IF( KBOT-KS+1.EQ.2 ) THEN
                  IF( WI( KBOT ).EQ.ZERO ) THEN
                     IF( ABS( WR( KBOT )-H( KBOT, KBOT ) ).LT. &
                         ABS( WR( KBOT-1 )-H( KBOT, KBOT ) ) ) THEN
                        WR( KBOT-1 ) = WR( KBOT )
                     ELSE
                        WR( KBOT ) = WR( KBOT-1 )
                     END IF
                  END IF
               END IF
!
!              ==== Use up to NS of the the smallest magnatiude
!              .    shifts.  If there aren't NS shifts available,
!              .    then use them all, possibly dropping one to
!              .    make the number of shifts even. ====
!
               NS = MIN( NS, KBOT-KS+1 )
               NS = NS - MOD( NS, 2 )
               KS = KBOT - NS + 1
!
!              ==== Small-bulge multi-shift QR sweep:
!              .    split workspace under the subdiagonal into
!              .    - a KDU-by-KDU work array U in the lower
!              .      left-hand-corner,
!              .    - a KDU-by-at-least-KDU-but-more-is-better
!              .      (KDU-by-NHo) horizontal work array WH along
!              .      the bottom edge,
!              .    - and an at-least-KDU-but-more-is-better-by-KDU
!              .      (NVE-by-KDU) vertical work WV arrow along
!              .      the left-hand-edge. ====
!
               KDU = 3*NS - 3
               KU = N - KDU + 1
               KWH = KDU + 1
               NHO = ( N-KDU+1-4 ) - ( KDU+1 ) + 1
               KWV = KDU + 4
               NVE = N - KDU - KWV + 1
!
!              ==== Small-bulge multi-shift QR sweep ====
!
               CALL DLAQR5( WANTT, WANTZ, KACC22, N, KTOP, KBOT, NS, &
                            WR( KS ), WI( KS ), H, LDH, ILOZ, IHIZ, Z, &
                            LDZ, WORK, 3, H( KU, 1 ), LDH, NVE, &
                            H( KWV, 1 ), LDH, NHO, H( KU, KWH ), LDH )
            END IF
!
!           ==== Note progress (or the lack of it). ====
!
            IF( LD.GT.0 ) THEN
               NDFL = 1
            ELSE
               NDFL = NDFL + 1
            END IF
!
!           ==== End of main loop ====
   80    CONTINUE
!
!        ==== Iteration limit exceeded.  Set INFO to show where
!        .    the problem occurred and exit. ====
!
         INFO = KBOT
   90    CONTINUE
      END IF
!
!     ==== Return the optimal value of LWORK. ====
!
      WORK( 1 ) = DBLE( LWKOPT )
!
!     ==== End of DLAQR4 ====
!
      END