dlaqr3.F90 Source File


Source Code

#include "ESMF_LapackBlas.inc"
!> \brief \b DLAQR3 performs the orthogonal similarity transformation of a Hessenberg matrix to detect and deflate fully converged eigenvalues from a trailing principal submatrix (aggressive early deflation).
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!> \htmlonly
!> Download DLAQR3 + dependencies
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaqr3.f">
!> [TGZ]</a>
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaqr3.f">
!> [ZIP]</a>
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaqr3.f">
!> [TXT]</a>
!> \endhtmlonly
!
!  Definition:
!  ===========
!
!       SUBROUTINE DLAQR3( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ,
!                          IHIZ, Z, LDZ, NS, ND, SR, SI, V, LDV, NH, T,
!                          LDT, NV, WV, LDWV, WORK, LWORK )
!
!       .. Scalar Arguments ..
!       INTEGER            IHIZ, ILOZ, KBOT, KTOP, LDH, LDT, LDV, LDWV,
!      $                   LDZ, LWORK, N, ND, NH, NS, NV, NW
!       LOGICAL            WANTT, WANTZ
!       ..
!       .. Array Arguments ..
!       DOUBLE PRECISION   H( LDH, * ), SI( * ), SR( * ), T( LDT, * ),
!      $                   V( LDV, * ), WORK( * ), WV( LDWV, * ),
!      $                   Z( LDZ, * )
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!>    Aggressive early deflation:
!>
!>    DLAQR3 accepts as input an upper Hessenberg matrix
!>    H and performs an orthogonal similarity transformation
!>    designed to detect and deflate fully converged eigenvalues from
!>    a trailing principal submatrix.  On output H has been over-
!>    written by a new Hessenberg matrix that is a perturbation of
!>    an orthogonal similarity transformation of H.  It is to be
!>    hoped that the final version of H has many zero subdiagonal
!>    entries.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] WANTT
!> \verbatim
!>          WANTT is LOGICAL
!>          If .TRUE., then the Hessenberg matrix H is fully updated
!>          so that the quasi-triangular Schur factor may be
!>          computed (in cooperation with the calling subroutine).
!>          If .FALSE., then only enough of H is updated to preserve
!>          the eigenvalues.
!> \endverbatim
!>
!> \param[in] WANTZ
!> \verbatim
!>          WANTZ is LOGICAL
!>          If .TRUE., then the orthogonal matrix Z is updated so
!>          so that the orthogonal Schur factor may be computed
!>          (in cooperation with the calling subroutine).
!>          If .FALSE., then Z is not referenced.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>          The order of the matrix H and (if WANTZ is .TRUE.) the
!>          order of the orthogonal matrix Z.
!> \endverbatim
!>
!> \param[in] KTOP
!> \verbatim
!>          KTOP is INTEGER
!>          It is assumed that either KTOP = 1 or H(KTOP,KTOP-1)=0.
!>          KBOT and KTOP together determine an isolated block
!>          along the diagonal of the Hessenberg matrix.
!> \endverbatim
!>
!> \param[in] KBOT
!> \verbatim
!>          KBOT is INTEGER
!>          It is assumed without a check that either
!>          KBOT = N or H(KBOT+1,KBOT)=0.  KBOT and KTOP together
!>          determine an isolated block along the diagonal of the
!>          Hessenberg matrix.
!> \endverbatim
!>
!> \param[in] NW
!> \verbatim
!>          NW is INTEGER
!>          Deflation window size.  1 .LE. NW .LE. (KBOT-KTOP+1).
!> \endverbatim
!>
!> \param[in,out] H
!> \verbatim
!>          H is DOUBLE PRECISION array, dimension (LDH,N)
!>          On input the initial N-by-N section of H stores the
!>          Hessenberg matrix undergoing aggressive early deflation.
!>          On output H has been transformed by an orthogonal
!>          similarity transformation, perturbed, and the returned
!>          to Hessenberg form that (it is to be hoped) has some
!>          zero subdiagonal entries.
!> \endverbatim
!>
!> \param[in] LDH
!> \verbatim
!>          LDH is INTEGER
!>          Leading dimension of H just as declared in the calling
!>          subroutine.  N .LE. LDH
!> \endverbatim
!>
!> \param[in] ILOZ
!> \verbatim
!>          ILOZ is INTEGER
!> \endverbatim
!>
!> \param[in] IHIZ
!> \verbatim
!>          IHIZ is INTEGER
!>          Specify the rows of Z to which transformations must be
!>          applied if WANTZ is .TRUE.. 1 .LE. ILOZ .LE. IHIZ .LE. N.
!> \endverbatim
!>
!> \param[in,out] Z
!> \verbatim
!>          Z is DOUBLE PRECISION array, dimension (LDZ,N)
!>          IF WANTZ is .TRUE., then on output, the orthogonal
!>          similarity transformation mentioned above has been
!>          accumulated into Z(ILOZ:IHIZ,ILOZ:IHIZ) from the right.
!>          If WANTZ is .FALSE., then Z is unreferenced.
!> \endverbatim
!>
!> \param[in] LDZ
!> \verbatim
!>          LDZ is INTEGER
!>          The leading dimension of Z just as declared in the
!>          calling subroutine.  1 .LE. LDZ.
!> \endverbatim
!>
!> \param[out] NS
!> \verbatim
!>          NS is INTEGER
!>          The number of unconverged (ie approximate) eigenvalues
!>          returned in SR and SI that may be used as shifts by the
!>          calling subroutine.
!> \endverbatim
!>
!> \param[out] ND
!> \verbatim
!>          ND is INTEGER
!>          The number of converged eigenvalues uncovered by this
!>          subroutine.
!> \endverbatim
!>
!> \param[out] SR
!> \verbatim
!>          SR is DOUBLE PRECISION array, dimension (KBOT)
!> \endverbatim
!>
!> \param[out] SI
!> \verbatim
!>          SI is DOUBLE PRECISION array, dimension (KBOT)
!>          On output, the real and imaginary parts of approximate
!>          eigenvalues that may be used for shifts are stored in
!>          SR(KBOT-ND-NS+1) through SR(KBOT-ND) and
!>          SI(KBOT-ND-NS+1) through SI(KBOT-ND), respectively.
!>          The real and imaginary parts of converged eigenvalues
!>          are stored in SR(KBOT-ND+1) through SR(KBOT) and
!>          SI(KBOT-ND+1) through SI(KBOT), respectively.
!> \endverbatim
!>
!> \param[out] V
!> \verbatim
!>          V is DOUBLE PRECISION array, dimension (LDV,NW)
!>          An NW-by-NW work array.
!> \endverbatim
!>
!> \param[in] LDV
!> \verbatim
!>          LDV is INTEGER
!>          The leading dimension of V just as declared in the
!>          calling subroutine.  NW .LE. LDV
!> \endverbatim
!>
!> \param[in] NH
!> \verbatim
!>          NH is INTEGER
!>          The number of columns of T.  NH.GE.NW.
!> \endverbatim
!>
!> \param[out] T
!> \verbatim
!>          T is DOUBLE PRECISION array, dimension (LDT,NW)
!> \endverbatim
!>
!> \param[in] LDT
!> \verbatim
!>          LDT is INTEGER
!>          The leading dimension of T just as declared in the
!>          calling subroutine.  NW .LE. LDT
!> \endverbatim
!>
!> \param[in] NV
!> \verbatim
!>          NV is INTEGER
!>          The number of rows of work array WV available for
!>          workspace.  NV.GE.NW.
!> \endverbatim
!>
!> \param[out] WV
!> \verbatim
!>          WV is DOUBLE PRECISION array, dimension (LDWV,NW)
!> \endverbatim
!>
!> \param[in] LDWV
!> \verbatim
!>          LDWV is INTEGER
!>          The leading dimension of W just as declared in the
!>          calling subroutine.  NW .LE. LDV
!> \endverbatim
!>
!> \param[out] WORK
!> \verbatim
!>          WORK is DOUBLE PRECISION array, dimension (LWORK)
!>          On exit, WORK(1) is set to an estimate of the optimal value
!>          of LWORK for the given values of N, NW, KTOP and KBOT.
!> \endverbatim
!>
!> \param[in] LWORK
!> \verbatim
!>          LWORK is INTEGER
!>          The dimension of the work array WORK.  LWORK = 2*NW
!>          suffices, but greater efficiency may result from larger
!>          values of LWORK.
!>
!>          If LWORK = -1, then a workspace query is assumed; DLAQR3
!>          only estimates the optimal workspace size for the given
!>          values of N, NW, KTOP and KBOT.  The estimate is returned
!>          in WORK(1).  No error message related to LWORK is issued
!>          by XERBLA.  Neither H nor Z are accessed.
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date June 2016
!
!> \ingroup doubleOTHERauxiliary
!
!> \par Contributors:
!  ==================
!>
!>       Karen Braman and Ralph Byers, Department of Mathematics,
!>       University of Kansas, USA
!>
!  =====================================================================
      SUBROUTINE DLAQR3( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ, &
                         IHIZ, Z, LDZ, NS, ND, SR, SI, V, LDV, NH, T, &
                         LDT, NV, WV, LDWV, WORK, LWORK )
!
!  -- LAPACK auxiliary routine (version 3.7.1) --
!  -- LAPACK is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     June 2016
!
!     .. Scalar Arguments ..
      INTEGER            IHIZ, ILOZ, KBOT, KTOP, LDH, LDT, LDV, LDWV, &
                         LDZ, LWORK, N, ND, NH, NS, NV, NW
      LOGICAL            WANTT, WANTZ
!     ..
!     .. Array Arguments ..
      DOUBLE PRECISION   H( LDH, * ), SI( * ), SR( * ), T( LDT, * ), &
                         V( LDV, * ), WORK( * ), WV( LDWV, * ), &
                         Z( LDZ, * )
!     ..
!
!  ================================================================
!     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0d0, ONE = 1.0d0 )
!     ..
!     .. Local Scalars ..
      DOUBLE PRECISION   AA, BB, BETA, CC, CS, DD, EVI, EVK, FOO, S, &
                         SAFMAX, SAFMIN, SMLNUM, SN, TAU, ULP
      INTEGER            I, IFST, ILST, INFO, INFQR, J, JW, K, KCOL, &
                         KEND, KLN, KROW, KWTOP, LTOP, LWK1, LWK2, LWK3, &
                         LWKOPT, NMIN
      LOGICAL            BULGE, SORTED
!     ..
!     .. External Functions ..
      DOUBLE PRECISION   DLAMCH
      INTEGER            ILAENV
      EXTERNAL           DLAMCH, ILAENV
!     ..
!     .. External Subroutines ..
      EXTERNAL           DCOPY, DGEHRD, DGEMM, DLABAD, DLACPY, DLAHQR, &
                         DLANV2, DLAQR4, DLARF, DLARFG, DLASET, DORMHR, &
                         DTREXC
!     ..
!     .. Intrinsic Functions ..
      INTRINSIC          ABS, DBLE, INT, MAX, MIN, SQRT
!     ..
!     .. Executable Statements ..
!
!     ==== Estimate optimal workspace. ====
!
      JW = MIN( NW, KBOT-KTOP+1 )
      IF( JW.LE.2 ) THEN
         LWKOPT = 1
      ELSE
!
!        ==== Workspace query call to DGEHRD ====
!
         CALL DGEHRD( JW, 1, JW-1, T, LDT, WORK, WORK, -1, INFO )
         LWK1 = INT( WORK( 1 ) )
!
!        ==== Workspace query call to DORMHR ====
!
         CALL DORMHR( 'R', 'N', JW, JW, 1, JW-1, T, LDT, WORK, V, LDV, &
                      WORK, -1, INFO )
         LWK2 = INT( WORK( 1 ) )
!
!        ==== Workspace query call to DLAQR4 ====
!
         CALL DLAQR4( .true., .true., JW, 1, JW, T, LDT, SR, SI, 1, JW, &
                      V, LDV, WORK, -1, INFQR )
         LWK3 = INT( WORK( 1 ) )
!
!        ==== Optimal workspace ====
!
         LWKOPT = MAX( JW+MAX( LWK1, LWK2 ), LWK3 )
      END IF
!
!     ==== Quick return in case of workspace query. ====
!
      IF( LWORK.EQ.-1 ) THEN
         WORK( 1 ) = DBLE( LWKOPT )
         RETURN
      END IF
!
!     ==== Nothing to do ...
!     ... for an empty active block ... ====
      NS = 0
      ND = 0
      WORK( 1 ) = ONE
      IF( KTOP.GT.KBOT ) &
         RETURN
!     ... nor for an empty deflation window. ====
      IF( NW.LT.1 ) &
         RETURN
!
!     ==== Machine constants ====
!
      SAFMIN = DLAMCH( 'SAFE MINIMUM' )
      SAFMAX = ONE / SAFMIN
      CALL DLABAD( SAFMIN, SAFMAX )
      ULP = DLAMCH( 'PRECISION' )
      SMLNUM = SAFMIN*( DBLE( N ) / ULP )
!
!     ==== Setup deflation window ====
!
      JW = MIN( NW, KBOT-KTOP+1 )
      KWTOP = KBOT - JW + 1
      IF( KWTOP.EQ.KTOP ) THEN
         S = ZERO
      ELSE
         S = H( KWTOP, KWTOP-1 )
      END IF
!
      IF( KBOT.EQ.KWTOP ) THEN
!
!        ==== 1-by-1 deflation window: not much to do ====
!
         SR( KWTOP ) = H( KWTOP, KWTOP )
         SI( KWTOP ) = ZERO
         NS = 1
         ND = 0
         IF( ABS( S ).LE.MAX( SMLNUM, ULP*ABS( H( KWTOP, KWTOP ) ) ) ) &
              THEN
            NS = 0
            ND = 1
            IF( KWTOP.GT.KTOP ) &
               H( KWTOP, KWTOP-1 ) = ZERO
         END IF
         WORK( 1 ) = ONE
         RETURN
      END IF
!
!     ==== Convert to spike-triangular form.  (In case of a
!     .    rare QR failure, this routine continues to do
!     .    aggressive early deflation using that part of
!     .    the deflation window that converged using INFQR
!     .    here and there to keep track.) ====
!
      CALL DLACPY( 'U', JW, JW, H( KWTOP, KWTOP ), LDH, T, LDT )
      CALL DCOPY( JW-1, H( KWTOP+1, KWTOP ), LDH+1, T( 2, 1 ), LDT+1 )
!
      CALL DLASET( 'A', JW, JW, ZERO, ONE, V, LDV )
      NMIN = ILAENV( 12, 'DLAQR3', 'SV', JW, 1, JW, LWORK )
      IF( JW.GT.NMIN ) THEN
         CALL DLAQR4( .true., .true., JW, 1, JW, T, LDT, SR( KWTOP ), &
                      SI( KWTOP ), 1, JW, V, LDV, WORK, LWORK, INFQR )
      ELSE
         CALL DLAHQR( .true., .true., JW, 1, JW, T, LDT, SR( KWTOP ), &
                      SI( KWTOP ), 1, JW, V, LDV, INFQR )
      END IF
!
!     ==== DTREXC needs a clean margin near the diagonal ====
!
      DO 10 J = 1, JW - 3
         T( J+2, J ) = ZERO
         T( J+3, J ) = ZERO
   10 CONTINUE
      IF( JW.GT.2 ) &
         T( JW, JW-2 ) = ZERO
!
!     ==== Deflation detection loop ====
!
      NS = JW
      ILST = INFQR + 1
   20 CONTINUE
      IF( ILST.LE.NS ) THEN
         IF( NS.EQ.1 ) THEN
            BULGE = .FALSE.
         ELSE
            BULGE = T( NS, NS-1 ).NE.ZERO
         END IF
!
!        ==== Small spike tip test for deflation ====
!
         IF( .NOT. BULGE ) THEN
!
!           ==== Real eigenvalue ====
!
            FOO = ABS( T( NS, NS ) )
            IF( FOO.EQ.ZERO ) &
               FOO = ABS( S )
            IF( ABS( S*V( 1, NS ) ).LE.MAX( SMLNUM, ULP*FOO ) ) THEN
!
!              ==== Deflatable ====
!
               NS = NS - 1
            ELSE
!
!              ==== Undeflatable.   Move it up out of the way.
!              .    (DTREXC can not fail in this case.) ====
!
               IFST = NS
               CALL DTREXC( 'V', JW, T, LDT, V, LDV, IFST, ILST, WORK, &
                            INFO )
               ILST = ILST + 1
            END IF
         ELSE
!
!           ==== Complex conjugate pair ====
!
            FOO = ABS( T( NS, NS ) ) + SQRT( ABS( T( NS, NS-1 ) ) )* &
                  SQRT( ABS( T( NS-1, NS ) ) )
            IF( FOO.EQ.ZERO ) &
               FOO = ABS( S )
            IF( MAX( ABS( S*V( 1, NS ) ), ABS( S*V( 1, NS-1 ) ) ).LE. &
                MAX( SMLNUM, ULP*FOO ) ) THEN
!
!              ==== Deflatable ====
!
               NS = NS - 2
            ELSE
!
!              ==== Undeflatable. Move them up out of the way.
!              .    Fortunately, DTREXC does the right thing with
!              .    ILST in case of a rare exchange failure. ====
!
               IFST = NS
               CALL DTREXC( 'V', JW, T, LDT, V, LDV, IFST, ILST, WORK, &
                            INFO )
               ILST = ILST + 2
            END IF
         END IF
!
!        ==== End deflation detection loop ====
!
         GO TO 20
      END IF
!
!        ==== Return to Hessenberg form ====
!
      IF( NS.EQ.0 ) &
         S = ZERO
!
      IF( NS.LT.JW ) THEN
!
!        ==== sorting diagonal blocks of T improves accuracy for
!        .    graded matrices.  Bubble sort deals well with
!        .    exchange failures. ====
!
         SORTED = .false.
         I = NS + 1
   30    CONTINUE
         IF( SORTED ) &
            GO TO 50
         SORTED = .true.
!
         KEND = I - 1
         I = INFQR + 1
         IF( I.EQ.NS ) THEN
            K = I + 1
         ELSE IF( T( I+1, I ).EQ.ZERO ) THEN
            K = I + 1
         ELSE
            K = I + 2
         END IF
   40    CONTINUE
         IF( K.LE.KEND ) THEN
            IF( K.EQ.I+1 ) THEN
               EVI = ABS( T( I, I ) )
            ELSE
               EVI = ABS( T( I, I ) ) + SQRT( ABS( T( I+1, I ) ) )* &
                     SQRT( ABS( T( I, I+1 ) ) )
            END IF
!
            IF( K.EQ.KEND ) THEN
               EVK = ABS( T( K, K ) )
            ELSE IF( T( K+1, K ).EQ.ZERO ) THEN
               EVK = ABS( T( K, K ) )
            ELSE
               EVK = ABS( T( K, K ) ) + SQRT( ABS( T( K+1, K ) ) )* &
                     SQRT( ABS( T( K, K+1 ) ) )
            END IF
!
            IF( EVI.GE.EVK ) THEN
               I = K
            ELSE
               SORTED = .false.
               IFST = I
               ILST = K
               CALL DTREXC( 'V', JW, T, LDT, V, LDV, IFST, ILST, WORK, &
                            INFO )
               IF( INFO.EQ.0 ) THEN
                  I = ILST
               ELSE
                  I = K
               END IF
            END IF
            IF( I.EQ.KEND ) THEN
               K = I + 1
            ELSE IF( T( I+1, I ).EQ.ZERO ) THEN
               K = I + 1
            ELSE
               K = I + 2
            END IF
            GO TO 40
         END IF
         GO TO 30
   50    CONTINUE
      END IF
!
!     ==== Restore shift/eigenvalue array from T ====
!
      I = JW
   60 CONTINUE
      IF( I.GE.INFQR+1 ) THEN
         IF( I.EQ.INFQR+1 ) THEN
            SR( KWTOP+I-1 ) = T( I, I )
            SI( KWTOP+I-1 ) = ZERO
            I = I - 1
         ELSE IF( T( I, I-1 ).EQ.ZERO ) THEN
            SR( KWTOP+I-1 ) = T( I, I )
            SI( KWTOP+I-1 ) = ZERO
            I = I - 1
         ELSE
            AA = T( I-1, I-1 )
            CC = T( I, I-1 )
            BB = T( I-1, I )
            DD = T( I, I )
            CALL DLANV2( AA, BB, CC, DD, SR( KWTOP+I-2 ), &
                         SI( KWTOP+I-2 ), SR( KWTOP+I-1 ), &
                         SI( KWTOP+I-1 ), CS, SN )
            I = I - 2
         END IF
         GO TO 60
      END IF
!
      IF( NS.LT.JW .OR. S.EQ.ZERO ) THEN
         IF( NS.GT.1 .AND. S.NE.ZERO ) THEN
!
!           ==== Reflect spike back into lower triangle ====
!
            CALL DCOPY( NS, V, LDV, WORK, 1 )
            BETA = WORK( 1 )
            CALL DLARFG( NS, BETA, WORK( 2 ), 1, TAU )
            WORK( 1 ) = ONE
!
            CALL DLASET( 'L', JW-2, JW-2, ZERO, ZERO, T( 3, 1 ), LDT )
!
            CALL DLARF( 'L', NS, JW, WORK, 1, TAU, T, LDT, &
                        WORK( JW+1 ) )
            CALL DLARF( 'R', NS, NS, WORK, 1, TAU, T, LDT, &
                        WORK( JW+1 ) )
            CALL DLARF( 'R', JW, NS, WORK, 1, TAU, V, LDV, &
                        WORK( JW+1 ) )
!
            CALL DGEHRD( JW, 1, NS, T, LDT, WORK, WORK( JW+1 ), &
                         LWORK-JW, INFO )
         END IF
!
!        ==== Copy updated reduced window into place ====
!
         IF( KWTOP.GT.1 ) &
            H( KWTOP, KWTOP-1 ) = S*V( 1, 1 )
         CALL DLACPY( 'U', JW, JW, T, LDT, H( KWTOP, KWTOP ), LDH )
         CALL DCOPY( JW-1, T( 2, 1 ), LDT+1, H( KWTOP+1, KWTOP ), &
                     LDH+1 )
!
!        ==== Accumulate orthogonal matrix in order update
!        .    H and Z, if requested.  ====
!
         IF( NS.GT.1 .AND. S.NE.ZERO ) &
            CALL DORMHR( 'R', 'N', JW, NS, 1, NS, T, LDT, WORK, V, LDV, &
                         WORK( JW+1 ), LWORK-JW, INFO )
!
!        ==== Update vertical slab in H ====
!
         IF( WANTT ) THEN
            LTOP = 1
         ELSE
            LTOP = KTOP
         END IF
         DO 70 KROW = LTOP, KWTOP - 1, NV
            KLN = MIN( NV, KWTOP-KROW )
            CALL DGEMM( 'N', 'N', KLN, JW, JW, ONE, H( KROW, KWTOP ), &
                        LDH, V, LDV, ZERO, WV, LDWV )
            CALL DLACPY( 'A', KLN, JW, WV, LDWV, H( KROW, KWTOP ), LDH )
   70    CONTINUE
!
!        ==== Update horizontal slab in H ====
!
         IF( WANTT ) THEN
            DO 80 KCOL = KBOT + 1, N, NH
               KLN = MIN( NH, N-KCOL+1 )
               CALL DGEMM( 'C', 'N', JW, KLN, JW, ONE, V, LDV, &
                           H( KWTOP, KCOL ), LDH, ZERO, T, LDT )
               CALL DLACPY( 'A', JW, KLN, T, LDT, H( KWTOP, KCOL ), &
                            LDH )
   80       CONTINUE
         END IF
!
!        ==== Update vertical slab in Z ====
!
         IF( WANTZ ) THEN
            DO 90 KROW = ILOZ, IHIZ, NV
               KLN = MIN( NV, IHIZ-KROW+1 )
               CALL DGEMM( 'N', 'N', KLN, JW, JW, ONE, Z( KROW, KWTOP ), &
                           LDZ, V, LDV, ZERO, WV, LDWV )
               CALL DLACPY( 'A', KLN, JW, WV, LDWV, Z( KROW, KWTOP ), &
                            LDZ )
   90       CONTINUE
         END IF
      END IF
!
!     ==== Return the number of deflations ... ====
!
      ND = JW - NS
!
!     ==== ... and the number of shifts. (Subtracting
!     .    INFQR from the spike length takes care
!     .    of the case of a rare QR failure while
!     .    calculating eigenvalues of the deflation
!     .    window.)  ====
!
      NS = NS - INFQR
!
!      ==== Return optimal workspace. ====
!
      WORK( 1 ) = DBLE( LWKOPT )
!
!     ==== End of DLAQR3 ====
!
      END