#include "ESMF_LapackBlas.inc" !> \brief \b DLAQR1 sets a scalar multiple of the first column of the product of 2-by-2 or 3-by-3 matrix H and specified shifts. ! ! =========== DOCUMENTATION =========== ! ! Online html documentation available at ! http://www.netlib.org/lapack/explore-html/ ! !> \htmlonly !> Download DLAQR1 + dependencies !> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaqr1.f"> !> [TGZ]</a> !> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaqr1.f"> !> [ZIP]</a> !> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaqr1.f"> !> [TXT]</a> !> \endhtmlonly ! ! Definition: ! =========== ! ! SUBROUTINE DLAQR1( N, H, LDH, SR1, SI1, SR2, SI2, V ) ! ! .. Scalar Arguments .. ! DOUBLE PRECISION SI1, SI2, SR1, SR2 ! INTEGER LDH, N ! .. ! .. Array Arguments .. ! DOUBLE PRECISION H( LDH, * ), V( * ) ! .. ! ! !> \par Purpose: ! ============= !> !> \verbatim !> !> Given a 2-by-2 or 3-by-3 matrix H, DLAQR1 sets v to a !> scalar multiple of the first column of the product !> !> (*) K = (H - (sr1 + i*si1)*I)*(H - (sr2 + i*si2)*I) !> !> scaling to avoid overflows and most underflows. It !> is assumed that either !> !> 1) sr1 = sr2 and si1 = -si2 !> or !> 2) si1 = si2 = 0. !> !> This is useful for starting double implicit shift bulges !> in the QR algorithm. !> \endverbatim ! ! Arguments: ! ========== ! !> \param[in] N !> \verbatim !> N is INTEGER !> Order of the matrix H. N must be either 2 or 3. !> \endverbatim !> !> \param[in] H !> \verbatim !> H is DOUBLE PRECISION array, dimension (LDH,N) !> The 2-by-2 or 3-by-3 matrix H in (*). !> \endverbatim !> !> \param[in] LDH !> \verbatim !> LDH is INTEGER !> The leading dimension of H as declared in !> the calling procedure. LDH.GE.N !> \endverbatim !> !> \param[in] SR1 !> \verbatim !> SR1 is DOUBLE PRECISION !> \endverbatim !> !> \param[in] SI1 !> \verbatim !> SI1 is DOUBLE PRECISION !> \endverbatim !> !> \param[in] SR2 !> \verbatim !> SR2 is DOUBLE PRECISION !> \endverbatim !> !> \param[in] SI2 !> \verbatim !> SI2 is DOUBLE PRECISION !> The shifts in (*). !> \endverbatim !> !> \param[out] V !> \verbatim !> V is DOUBLE PRECISION array, dimension (N) !> A scalar multiple of the first column of the !> matrix K in (*). !> \endverbatim ! ! Authors: ! ======== ! !> \author Univ. of Tennessee !> \author Univ. of California Berkeley !> \author Univ. of Colorado Denver !> \author NAG Ltd. ! !> \date June 2017 ! !> \ingroup doubleOTHERauxiliary ! !> \par Contributors: ! ================== !> !> Karen Braman and Ralph Byers, Department of Mathematics, !> University of Kansas, USA !> ! ===================================================================== SUBROUTINE DLAQR1( N, H, LDH, SR1, SI1, SR2, SI2, V ) ! ! -- LAPACK auxiliary routine (version 3.7.1) -- ! -- LAPACK is a software package provided by Univ. of Tennessee, -- ! -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- ! June 2017 ! ! .. Scalar Arguments .. DOUBLE PRECISION SI1, SI2, SR1, SR2 INTEGER LDH, N ! .. ! .. Array Arguments .. DOUBLE PRECISION H( LDH, * ), V( * ) ! .. ! ! ================================================================ ! ! .. Parameters .. DOUBLE PRECISION ZERO PARAMETER ( ZERO = 0.0d0 ) ! .. ! .. Local Scalars .. DOUBLE PRECISION H21S, H31S, S ! .. ! .. Intrinsic Functions .. INTRINSIC ABS ! .. ! .. Executable Statements .. IF( N.EQ.2 ) THEN S = ABS( H( 1, 1 )-SR2 ) + ABS( SI2 ) + ABS( H( 2, 1 ) ) IF( S.EQ.ZERO ) THEN V( 1 ) = ZERO V( 2 ) = ZERO ELSE H21S = H( 2, 1 ) / S V( 1 ) = H21S*H( 1, 2 ) + ( H( 1, 1 )-SR1 )* & ( ( H( 1, 1 )-SR2 ) / S ) - SI1*( SI2 / S ) V( 2 ) = H21S*( H( 1, 1 )+H( 2, 2 )-SR1-SR2 ) END IF ELSE S = ABS( H( 1, 1 )-SR2 ) + ABS( SI2 ) + ABS( H( 2, 1 ) ) + & ABS( H( 3, 1 ) ) IF( S.EQ.ZERO ) THEN V( 1 ) = ZERO V( 2 ) = ZERO V( 3 ) = ZERO ELSE H21S = H( 2, 1 ) / S H31S = H( 3, 1 ) / S V( 1 ) = ( H( 1, 1 )-SR1 )*( ( H( 1, 1 )-SR2 ) / S ) - & SI1*( SI2 / S ) + H( 1, 2 )*H21S + H( 1, 3 )*H31S V( 2 ) = H21S*( H( 1, 1 )+H( 2, 2 )-SR1-SR2 ) + & H( 2, 3 )*H31S V( 3 ) = H31S*( H( 1, 1 )+H( 3, 3 )-SR1-SR2 ) + & H21S*H( 3, 2 ) END IF END IF END