dlaqr1.F90 Source File


Source Code

#include "ESMF_LapackBlas.inc"
!> \brief \b DLAQR1 sets a scalar multiple of the first column of the product of 2-by-2 or 3-by-3 matrix H and specified shifts.
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!> \htmlonly
!> Download DLAQR1 + dependencies
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaqr1.f">
!> [TGZ]</a>
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaqr1.f">
!> [ZIP]</a>
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaqr1.f">
!> [TXT]</a>
!> \endhtmlonly
!
!  Definition:
!  ===========
!
!       SUBROUTINE DLAQR1( N, H, LDH, SR1, SI1, SR2, SI2, V )
!
!       .. Scalar Arguments ..
!       DOUBLE PRECISION   SI1, SI2, SR1, SR2
!       INTEGER            LDH, N
!       ..
!       .. Array Arguments ..
!       DOUBLE PRECISION   H( LDH, * ), V( * )
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!>      Given a 2-by-2 or 3-by-3 matrix H, DLAQR1 sets v to a
!>      scalar multiple of the first column of the product
!>
!>      (*)  K = (H - (sr1 + i*si1)*I)*(H - (sr2 + i*si2)*I)
!>
!>      scaling to avoid overflows and most underflows. It
!>      is assumed that either
!>
!>              1) sr1 = sr2 and si1 = -si2
!>          or
!>              2) si1 = si2 = 0.
!>
!>      This is useful for starting double implicit shift bulges
!>      in the QR algorithm.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>              Order of the matrix H. N must be either 2 or 3.
!> \endverbatim
!>
!> \param[in] H
!> \verbatim
!>          H is DOUBLE PRECISION array, dimension (LDH,N)
!>              The 2-by-2 or 3-by-3 matrix H in (*).
!> \endverbatim
!>
!> \param[in] LDH
!> \verbatim
!>          LDH is INTEGER
!>              The leading dimension of H as declared in
!>              the calling procedure.  LDH.GE.N
!> \endverbatim
!>
!> \param[in] SR1
!> \verbatim
!>          SR1 is DOUBLE PRECISION
!> \endverbatim
!>
!> \param[in] SI1
!> \verbatim
!>          SI1 is DOUBLE PRECISION
!> \endverbatim
!>
!> \param[in] SR2
!> \verbatim
!>          SR2 is DOUBLE PRECISION
!> \endverbatim
!>
!> \param[in] SI2
!> \verbatim
!>          SI2 is DOUBLE PRECISION
!>              The shifts in (*).
!> \endverbatim
!>
!> \param[out] V
!> \verbatim
!>          V is DOUBLE PRECISION array, dimension (N)
!>              A scalar multiple of the first column of the
!>              matrix K in (*).
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date June 2017
!
!> \ingroup doubleOTHERauxiliary
!
!> \par Contributors:
!  ==================
!>
!>       Karen Braman and Ralph Byers, Department of Mathematics,
!>       University of Kansas, USA
!>
!  =====================================================================
      SUBROUTINE DLAQR1( N, H, LDH, SR1, SI1, SR2, SI2, V )
!
!  -- LAPACK auxiliary routine (version 3.7.1) --
!  -- LAPACK is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     June 2017
!
!     .. Scalar Arguments ..
      DOUBLE PRECISION   SI1, SI2, SR1, SR2
      INTEGER            LDH, N
!     ..
!     .. Array Arguments ..
      DOUBLE PRECISION   H( LDH, * ), V( * )
!     ..
!
!  ================================================================
!
!     .. Parameters ..
      DOUBLE PRECISION   ZERO
      PARAMETER          ( ZERO = 0.0d0 )
!     ..
!     .. Local Scalars ..
      DOUBLE PRECISION   H21S, H31S, S
!     ..
!     .. Intrinsic Functions ..
      INTRINSIC          ABS
!     ..
!     .. Executable Statements ..
      IF( N.EQ.2 ) THEN
         S = ABS( H( 1, 1 )-SR2 ) + ABS( SI2 ) + ABS( H( 2, 1 ) )
         IF( S.EQ.ZERO ) THEN
            V( 1 ) = ZERO
            V( 2 ) = ZERO
         ELSE
            H21S = H( 2, 1 ) / S
            V( 1 ) = H21S*H( 1, 2 ) + ( H( 1, 1 )-SR1 )* &
                     ( ( H( 1, 1 )-SR2 ) / S ) - SI1*( SI2 / S )
            V( 2 ) = H21S*( H( 1, 1 )+H( 2, 2 )-SR1-SR2 )
         END IF
      ELSE
         S = ABS( H( 1, 1 )-SR2 ) + ABS( SI2 ) + ABS( H( 2, 1 ) ) + &
             ABS( H( 3, 1 ) )
         IF( S.EQ.ZERO ) THEN
            V( 1 ) = ZERO
            V( 2 ) = ZERO
            V( 3 ) = ZERO
         ELSE
            H21S = H( 2, 1 ) / S
            H31S = H( 3, 1 ) / S
            V( 1 ) = ( H( 1, 1 )-SR1 )*( ( H( 1, 1 )-SR2 ) / S ) - &
                     SI1*( SI2 / S ) + H( 1, 2 )*H21S + H( 1, 3 )*H31S
            V( 2 ) = H21S*( H( 1, 1 )+H( 2, 2 )-SR1-SR2 ) + &
                     H( 2, 3 )*H31S
            V( 3 ) = H31S*( H( 1, 1 )+H( 3, 3 )-SR1-SR2 ) + &
                     H21S*H( 3, 2 )
         END IF
      END IF
      END