dlaqps.F90 Source File


Source Code

#include "ESMF_LapackBlas.inc"
!> \brief \b DLAQPS
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!> \htmlonly
!> Download DLAQPS + dependencies
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaqps.f">
!> [TGZ]</a>
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaqps.f">
!> [ZIP]</a>
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaqps.f">
!> [TXT]</a>
!> \endhtmlonly
!
!  Definition:
!  ===========
!
!       SUBROUTINE DLAQPS( M, N, OFFSET, NB, KB, A, LDA, JPVT, TAU, VN1,
!                          VN2, AUXV, F, LDF )
!
!       .. Scalar Arguments ..
!       INTEGER            KB, LDA, LDF, M, N, NB, OFFSET
!       ..
!       .. Array Arguments ..
!       INTEGER            JPVT( * )
!       DOUBLE PRECISION   A( LDA, * ), AUXV( * ), F( LDF, * ), TAU( * ),
!      $                   VN1( * ), VN2( * )
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> DLAQPS computes a step of QR factorization with column pivoting
!> of a real M-by-N matrix A by using Blas-3.  It tries to factorize
!> NB columns from A starting from the row OFFSET+1, and updates all
!> of the matrix with Blas-3 xGEMM.
!>
!> In some cases, due to catastrophic cancellations, it cannot
!> factorize NB columns.  Hence, the actual number of factorized
!> columns is returned in KB.
!>
!> Block A(1:OFFSET,1:N) is accordingly pivoted, but not factorized.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] M
!> \verbatim
!>          M is INTEGER
!>          The number of rows of the matrix A. M >= 0.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>          The number of columns of the matrix A. N >= 0
!> \endverbatim
!>
!> \param[in] OFFSET
!> \verbatim
!>          OFFSET is INTEGER
!>          The number of rows of A that have been factorized in
!>          previous steps.
!> \endverbatim
!>
!> \param[in] NB
!> \verbatim
!>          NB is INTEGER
!>          The number of columns to factorize.
!> \endverbatim
!>
!> \param[out] KB
!> \verbatim
!>          KB is INTEGER
!>          The number of columns actually factorized.
!> \endverbatim
!>
!> \param[in,out] A
!> \verbatim
!>          A is DOUBLE PRECISION array, dimension (LDA,N)
!>          On entry, the M-by-N matrix A.
!>          On exit, block A(OFFSET+1:M,1:KB) is the triangular
!>          factor obtained and block A(1:OFFSET,1:N) has been
!>          accordingly pivoted, but no factorized.
!>          The rest of the matrix, block A(OFFSET+1:M,KB+1:N) has
!>          been updated.
!> \endverbatim
!>
!> \param[in] LDA
!> \verbatim
!>          LDA is INTEGER
!>          The leading dimension of the array A. LDA >= max(1,M).
!> \endverbatim
!>
!> \param[in,out] JPVT
!> \verbatim
!>          JPVT is INTEGER array, dimension (N)
!>          JPVT(I) = K <==> Column K of the full matrix A has been
!>          permuted into position I in AP.
!> \endverbatim
!>
!> \param[out] TAU
!> \verbatim
!>          TAU is DOUBLE PRECISION array, dimension (KB)
!>          The scalar factors of the elementary reflectors.
!> \endverbatim
!>
!> \param[in,out] VN1
!> \verbatim
!>          VN1 is DOUBLE PRECISION array, dimension (N)
!>          The vector with the partial column norms.
!> \endverbatim
!>
!> \param[in,out] VN2
!> \verbatim
!>          VN2 is DOUBLE PRECISION array, dimension (N)
!>          The vector with the exact column norms.
!> \endverbatim
!>
!> \param[in,out] AUXV
!> \verbatim
!>          AUXV is DOUBLE PRECISION array, dimension (NB)
!>          Auxiliar vector.
!> \endverbatim
!>
!> \param[in,out] F
!> \verbatim
!>          F is DOUBLE PRECISION array, dimension (LDF,NB)
!>          Matrix F**T = L*Y**T*A.
!> \endverbatim
!>
!> \param[in] LDF
!> \verbatim
!>          LDF is INTEGER
!>          The leading dimension of the array F. LDF >= max(1,N).
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date November 2011
!
!> \ingroup doubleOTHERauxiliary
!
!> \par Contributors:
!  ==================
!>
!>    G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain
!>    X. Sun, Computer Science Dept., Duke University, USA
!> \n
!>  Partial column norm updating strategy modified on April 2011
!>    Z. Drmac and Z. Bujanovic, Dept. of Mathematics,
!>    University of Zagreb, Croatia.
!
!> \par References:
!  ================
!>
!> LAPACK Working Note 176
!
!> \htmlonly
!> <a href="http://www.netlib.org/lapack/lawnspdf/lawn176.pdf">[PDF]</a>
!> \endhtmlonly
!
!  =====================================================================
      SUBROUTINE DLAQPS( M, N, OFFSET, NB, KB, A, LDA, JPVT, TAU, VN1, &
     &                   VN2, AUXV, F, LDF )
!
!  -- LAPACK auxiliary routine (version 3.4.0) --
!  -- LAPACK is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     November 2011
!
!     .. Scalar Arguments ..
      INTEGER            KB, LDA, LDF, M, N, NB, OFFSET
!     ..
!     .. Array Arguments ..
      INTEGER            JPVT( * )
      DOUBLE PRECISION   A( LDA, * ), AUXV( * ), F( LDF, * ), TAU( * ), &
     &                   VN1( * ), VN2( * )
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
!     ..
!     .. Local Scalars ..
      INTEGER            ITEMP, J, K, LASTRK, LSTICC, PVT, RK
      DOUBLE PRECISION   AKK, TEMP, TEMP2, TOL3Z
!     ..
!     .. External Subroutines ..
      EXTERNAL           DGEMM, DGEMV, DLARFG, DSWAP
!     ..
!     .. Intrinsic Functions ..
      INTRINSIC          ABS, DBLE, MAX, MIN, NINT, SQRT
!     ..
!     .. External Functions ..
      INTEGER            IDAMAX
      DOUBLE PRECISION   DLAMCH, DNRM2
      EXTERNAL           IDAMAX, DLAMCH, DNRM2
!     ..
!     .. Executable Statements ..
!
      LASTRK = MIN( M, N+OFFSET )
      LSTICC = 0
      K = 0
      TOL3Z = SQRT(DLAMCH('Epsilon'))
!
!     Beginning of while loop.
!
   10 CONTINUE
      IF( ( K.LT.NB ) .AND. ( LSTICC.EQ.0 ) ) THEN
         K = K + 1
         RK = OFFSET + K
!
!        Determine ith pivot column and swap if necessary
!
         PVT = ( K-1 ) + IDAMAX( N-K+1, VN1( K ), 1 )
         IF( PVT.NE.K ) THEN
            CALL DSWAP( M, A( 1, PVT ), 1, A( 1, K ), 1 )
            CALL DSWAP( K-1, F( PVT, 1 ), LDF, F( K, 1 ), LDF )
            ITEMP = JPVT( PVT )
            JPVT( PVT ) = JPVT( K )
            JPVT( K ) = ITEMP
            VN1( PVT ) = VN1( K )
            VN2( PVT ) = VN2( K )
         END IF
!
!        Apply previous Householder reflectors to column K:
!        A(RK:M,K) := A(RK:M,K) - A(RK:M,1:K-1)*F(K,1:K-1)**T.
!
         IF( K.GT.1 ) THEN
            CALL DGEMV( 'No transpose', M-RK+1, K-1, -ONE, A( RK, 1 ), &
     &                  LDA, F( K, 1 ), LDF, ONE, A( RK, K ), 1 )
         END IF
!
!        Generate elementary reflector H(k).
!
         IF( RK.LT.M ) THEN
            CALL DLARFG( M-RK+1, A( RK, K ), A( RK+1, K ), 1, TAU( K ) )
         ELSE
            CALL DLARFG( 1, A( RK, K ), A( RK, K ), 1, TAU( K ) )
         END IF
!
         AKK = A( RK, K )
         A( RK, K ) = ONE
!
!        Compute Kth column of F:
!
!        Compute  F(K+1:N,K) := tau(K)*A(RK:M,K+1:N)**T*A(RK:M,K).
!
         IF( K.LT.N ) THEN
            CALL DGEMV( 'Transpose', M-RK+1, N-K, TAU( K ), &
     &                  A( RK, K+1 ), LDA, A( RK, K ), 1, ZERO, &
     &                  F( K+1, K ), 1 )
         END IF
!
!        Padding F(1:K,K) with zeros.
!
         DO 20 J = 1, K
            F( J, K ) = ZERO
   20    CONTINUE
!
!        Incremental updating of F:
!        F(1:N,K) := F(1:N,K) - tau(K)*F(1:N,1:K-1)*A(RK:M,1:K-1)**T
!                    *A(RK:M,K).
!
         IF( K.GT.1 ) THEN
            CALL DGEMV( 'Transpose', M-RK+1, K-1, -TAU( K ), A( RK, 1 ), &
     &                  LDA, A( RK, K ), 1, ZERO, AUXV( 1 ), 1 )
!
            CALL DGEMV( 'No transpose', N, K-1, ONE, F( 1, 1 ), LDF, &
     &                  AUXV( 1 ), 1, ONE, F( 1, K ), 1 )
         END IF
!
!        Update the current row of A:
!        A(RK,K+1:N) := A(RK,K+1:N) - A(RK,1:K)*F(K+1:N,1:K)**T.
!
         IF( K.LT.N ) THEN
            CALL DGEMV( 'No transpose', N-K, K, -ONE, F( K+1, 1 ), LDF, &
     &                  A( RK, 1 ), LDA, ONE, A( RK, K+1 ), LDA )
         END IF
!
!        Update partial column norms.
!
         IF( RK.LT.LASTRK ) THEN
            DO 30 J = K + 1, N
               IF( VN1( J ).NE.ZERO ) THEN
!
!                 NOTE: The following 4 lines follow from the analysis in
!                 Lapack Working Note 176.
!
                  TEMP = ABS( A( RK, J ) ) / VN1( J )
                  TEMP = MAX( ZERO, ( ONE+TEMP )*( ONE-TEMP ) )
                  TEMP2 = TEMP*( VN1( J ) / VN2( J ) )**2
                  IF( TEMP2 .LE. TOL3Z ) THEN
                     VN2( J ) = DBLE( LSTICC )
                     LSTICC = J
                  ELSE
                     VN1( J ) = VN1( J )*SQRT( TEMP )
                  END IF
               END IF
   30       CONTINUE
         END IF
!
         A( RK, K ) = AKK
!
!        End of while loop.
!
         GO TO 10
      END IF
      KB = K
      RK = OFFSET + KB
!
!     Apply the block reflector to the rest of the matrix:
!     A(OFFSET+KB+1:M,KB+1:N) := A(OFFSET+KB+1:M,KB+1:N) -
!                         A(OFFSET+KB+1:M,1:KB)*F(KB+1:N,1:KB)**T.
!
      IF( KB.LT.MIN( N, M-OFFSET ) ) THEN
         CALL DGEMM( 'No transpose', 'Transpose', M-RK, N-KB, KB, -ONE, &
     &               A( RK+1, 1 ), LDA, F( KB+1, 1 ), LDF, ONE, &
     &               A( RK+1, KB+1 ), LDA )
      END IF
!
!     Recomputation of difficult columns.
!
   40 CONTINUE
      IF( LSTICC.GT.0 ) THEN
         ITEMP = NINT( VN2( LSTICC ) )
         VN1( LSTICC ) = DNRM2( M-RK, A( RK+1, LSTICC ), 1 )
!
!        NOTE: The computation of VN1( LSTICC ) relies on the fact that
!        SNRM2 does not fail on vectors with norm below the value of
!        SQRT(DLAMCH('S'))
!
         VN2( LSTICC ) = VN1( LSTICC )
         LSTICC = ITEMP
         GO TO 40
      END IF
!
      RETURN
!
!     End of DLAQPS
!
      END