dlansy.F90 Source File


Source Code

#include "ESMF_LapackBlas.inc"
!> \brief \b DLANSY returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real symmetric matrix.
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!> \htmlonly
!> Download DLANSY + dependencies
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlansy.f">
!> [TGZ]</a>
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlansy.f">
!> [ZIP]</a>
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlansy.f">
!> [TXT]</a>
!> \endhtmlonly
!
!  Definition:
!  ===========
!
!       DOUBLE PRECISION FUNCTION DLANSY( NORM, UPLO, N, A, LDA, WORK )
!
!       .. Scalar Arguments ..
!       CHARACTER          NORM, UPLO
!       INTEGER            LDA, N
!       ..
!       .. Array Arguments ..
!       DOUBLE PRECISION   A( LDA, * ), WORK( * )
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> DLANSY  returns the value of the one norm,  or the Frobenius norm, or
!> the  infinity norm,  or the  element of  largest absolute value  of a
!> real symmetric matrix A.
!> \endverbatim
!>
!> \return DLANSY
!> \verbatim
!>
!>    DLANSY = ( max(abs(A(i,j))), NORM = 'M' or 'm'
!>             (
!>             ( norm1(A),         NORM = '1', 'O' or 'o'
!>             (
!>             ( normI(A),         NORM = 'I' or 'i'
!>             (
!>             ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
!>
!> where  norm1  denotes the  one norm of a matrix (maximum column sum),
!> normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
!> normF  denotes the  Frobenius norm of a matrix (square root of sum of
!> squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] NORM
!> \verbatim
!>          NORM is CHARACTER*1
!>          Specifies the value to be returned in DLANSY as described
!>          above.
!> \endverbatim
!>
!> \param[in] UPLO
!> \verbatim
!>          UPLO is CHARACTER*1
!>          Specifies whether the upper or lower triangular part of the
!>          symmetric matrix A is to be referenced.
!>          = 'U':  Upper triangular part of A is referenced
!>          = 'L':  Lower triangular part of A is referenced
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>          The order of the matrix A.  N >= 0.  When N = 0, DLANSY is
!>          set to zero.
!> \endverbatim
!>
!> \param[in] A
!> \verbatim
!>          A is DOUBLE PRECISION array, dimension (LDA,N)
!>          The symmetric matrix A.  If UPLO = 'U', the leading n by n
!>          upper triangular part of A contains the upper triangular part
!>          of the matrix A, and the strictly lower triangular part of A
!>          is not referenced.  If UPLO = 'L', the leading n by n lower
!>          triangular part of A contains the lower triangular part of
!>          the matrix A, and the strictly upper triangular part of A is
!>          not referenced.
!> \endverbatim
!>
!> \param[in] LDA
!> \verbatim
!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(N,1).
!> \endverbatim
!>
!> \param[out] WORK
!> \verbatim
!>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
!>          where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
!>          WORK is not referenced.
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup doubleSYauxiliary
!
!  =====================================================================
      DOUBLE PRECISION FUNCTION DLANSY( NORM, UPLO, N, A, LDA, WORK )
!
!  -- LAPACK auxiliary routine (version 3.7.0) --
!  -- LAPACK is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
      CHARACTER          NORM, UPLO
      INTEGER            LDA, N
!     ..
!     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * ), WORK( * )
!     ..
!
! =====================================================================
!
!     .. Parameters ..
      DOUBLE PRECISION   ONE, ZERO
      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
!     ..
!     .. Local Scalars ..
      INTEGER            I, J
      DOUBLE PRECISION   ABSA, SCALE, SUM, VALUE
!     ..
!     .. External Subroutines ..
      EXTERNAL           DLASSQ
!     ..
!     .. External Functions ..
      LOGICAL            LSAME, DISNAN
      EXTERNAL           LSAME, DISNAN
!     ..
!     .. Intrinsic Functions ..
      INTRINSIC          ABS, SQRT
!     ..
!     .. Executable Statements ..
!
      IF( N.EQ.0 ) THEN
         VALUE = ZERO
      ELSE IF( LSAME( NORM, 'M' ) ) THEN
!
!        Find max(abs(A(i,j))).
!
         VALUE = ZERO
         IF( LSAME( UPLO, 'U' ) ) THEN
            DO 20 J = 1, N
               DO 10 I = 1, J
                  SUM = ABS( A( I, J ) )
                  IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
   10          CONTINUE
   20       CONTINUE
         ELSE
            DO 40 J = 1, N
               DO 30 I = J, N
                  SUM = ABS( A( I, J ) )
                  IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
   30          CONTINUE
   40       CONTINUE
         END IF
      ELSE IF( ( LSAME( NORM, 'I' ) ) .OR. ( LSAME( NORM, 'O' ) ) .OR. &
               ( NORM.EQ.'1' ) ) THEN
!
!        Find normI(A) ( = norm1(A), since A is symmetric).
!
         VALUE = ZERO
         IF( LSAME( UPLO, 'U' ) ) THEN
            DO 60 J = 1, N
               SUM = ZERO
               DO 50 I = 1, J - 1
                  ABSA = ABS( A( I, J ) )
                  SUM = SUM + ABSA
                  WORK( I ) = WORK( I ) + ABSA
   50          CONTINUE
               WORK( J ) = SUM + ABS( A( J, J ) )
   60       CONTINUE
            DO 70 I = 1, N
               SUM = WORK( I )
               IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
   70       CONTINUE
         ELSE
            DO 80 I = 1, N
               WORK( I ) = ZERO
   80       CONTINUE
            DO 100 J = 1, N
               SUM = WORK( J ) + ABS( A( J, J ) )
               DO 90 I = J + 1, N
                  ABSA = ABS( A( I, J ) )
                  SUM = SUM + ABSA
                  WORK( I ) = WORK( I ) + ABSA
   90          CONTINUE
               IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  100       CONTINUE
         END IF
      ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
!
!        Find normF(A).
!
         SCALE = ZERO
         SUM = ONE
         IF( LSAME( UPLO, 'U' ) ) THEN
            DO 110 J = 2, N
               CALL DLASSQ( J-1, A( 1, J ), 1, SCALE, SUM )
  110       CONTINUE
         ELSE
            DO 120 J = 1, N - 1
               CALL DLASSQ( N-J, A( J+1, J ), 1, SCALE, SUM )
  120       CONTINUE
         END IF
         SUM = 2*SUM
         CALL DLASSQ( N, A, LDA+1, SCALE, SUM )
         VALUE = SCALE*SQRT( SUM )
      END IF
!
      DLANSY = VALUE
      RETURN
!
!     End of DLANSY
!
      END