#include "ESMF_LapackBlas.inc" !> \brief \b DLANGE ! ! =========== DOCUMENTATION =========== ! ! Online html documentation available at ! http://www.netlib.org/lapack/explore-html/ ! !> \htmlonly !> Download DLANGE + dependencies !> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlange.f"> !> [TGZ]</a> !> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlange.f"> !> [ZIP]</a> !> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlange.f"> !> [TXT]</a> !> \endhtmlonly ! ! Definition: ! =========== ! ! DOUBLE PRECISION FUNCTION DLANGE( NORM, M, N, A, LDA, WORK ) ! ! .. Scalar Arguments .. ! CHARACTER NORM ! INTEGER LDA, M, N ! .. ! .. Array Arguments .. ! DOUBLE PRECISION A( LDA, * ), WORK( * ) ! .. ! ! !> \par Purpose: ! ============= !> !> \verbatim !> !> DLANGE returns the value of the one norm, or the Frobenius norm, or !> the infinity norm, or the element of largest absolute value of a !> real matrix A. !> \endverbatim !> !> \return DLANGE !> \verbatim !> !> DLANGE = ( max(abs(A(i,j))), NORM = 'M' or 'm' !> ( !> ( norm1(A), NORM = '1', 'O' or 'o' !> ( !> ( normI(A), NORM = 'I' or 'i' !> ( !> ( normF(A), NORM = 'F', 'f', 'E' or 'e' !> !> where norm1 denotes the one norm of a matrix (maximum column sum), !> normI denotes the infinity norm of a matrix (maximum row sum) and !> normF denotes the Frobenius norm of a matrix (square root of sum of !> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm. !> \endverbatim ! ! Arguments: ! ========== ! !> \param[in] NORM !> \verbatim !> NORM is CHARACTER*1 !> Specifies the value to be returned in DLANGE as described !> above. !> \endverbatim !> !> \param[in] M !> \verbatim !> M is INTEGER !> The number of rows of the matrix A. M >= 0. When M = 0, !> DLANGE is set to zero. !> \endverbatim !> !> \param[in] N !> \verbatim !> N is INTEGER !> The number of columns of the matrix A. N >= 0. When N = 0, !> DLANGE is set to zero. !> \endverbatim !> !> \param[in] A !> \verbatim !> A is DOUBLE PRECISION array, dimension (LDA,N) !> The m by n matrix A. !> \endverbatim !> !> \param[in] LDA !> \verbatim !> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(M,1). !> \endverbatim !> !> \param[out] WORK !> \verbatim !> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)), !> where LWORK >= M when NORM = 'I'; otherwise, WORK is not !> referenced. !> \endverbatim ! ! Authors: ! ======== ! !> \author Univ. of Tennessee !> \author Univ. of California Berkeley !> \author Univ. of Colorado Denver !> \author NAG Ltd. ! !> \date November 2011 ! !> \ingroup doubleGEauxiliary ! ! ===================================================================== DOUBLE PRECISION FUNCTION DLANGE( NORM, M, N, A, LDA, WORK ) ! ! -- LAPACK auxiliary routine (version 3.4.0) -- ! -- LAPACK is a software package provided by Univ. of Tennessee, -- ! -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- ! November 2011 ! ! .. Scalar Arguments .. CHARACTER NORM INTEGER LDA, M, N ! .. ! .. Array Arguments .. DOUBLE PRECISION A( LDA, * ), WORK( * ) ! .. ! ! ===================================================================== ! ! .. Parameters .. DOUBLE PRECISION ONE, ZERO PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) ! .. ! .. Local Scalars .. INTEGER I, J DOUBLE PRECISION SCALE, SUM, VALUE ! .. ! .. External Subroutines .. EXTERNAL DLASSQ ! .. ! .. External Functions .. LOGICAL LSAME EXTERNAL LSAME ! .. ! .. Intrinsic Functions .. INTRINSIC ABS, MAX, MIN, SQRT ! .. ! .. Executable Statements .. ! IF( MIN( M, N ).EQ.0 ) THEN VALUE = ZERO ELSE IF( LSAME( NORM, 'M' ) ) THEN ! ! Find max(abs(A(i,j))). ! VALUE = ZERO DO 20 J = 1, N DO 10 I = 1, M VALUE = MAX( VALUE, ABS( A( I, J ) ) ) 10 CONTINUE 20 CONTINUE ELSE IF( ( LSAME( NORM, 'O' ) ) .OR. ( NORM.EQ.'1' ) ) THEN ! ! Find norm1(A). ! VALUE = ZERO DO 40 J = 1, N SUM = ZERO DO 30 I = 1, M SUM = SUM + ABS( A( I, J ) ) 30 CONTINUE VALUE = MAX( VALUE, SUM ) 40 CONTINUE ELSE IF( LSAME( NORM, 'I' ) ) THEN ! ! Find normI(A). ! DO 50 I = 1, M WORK( I ) = ZERO 50 CONTINUE DO 70 J = 1, N DO 60 I = 1, M WORK( I ) = WORK( I ) + ABS( A( I, J ) ) 60 CONTINUE 70 CONTINUE VALUE = ZERO DO 80 I = 1, M VALUE = MAX( VALUE, WORK( I ) ) 80 CONTINUE ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN ! ! Find normF(A). ! SCALE = ZERO SUM = ONE DO 90 J = 1, N CALL DLASSQ( M, A( 1, J ), 1, SCALE, SUM ) 90 CONTINUE VALUE = SCALE*SQRT( SUM ) END IF ! DLANGE = VALUE RETURN ! ! End of DLANGE ! END