dlalsa.F90 Source File


Source Code

#include "ESMF_LapackBlas.inc"
!> \brief \b DLALSA
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!> \htmlonly
!> Download DLALSA + dependencies
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlalsa.f">
!> [TGZ]</a>
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlalsa.f">
!> [ZIP]</a>
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlalsa.f">
!> [TXT]</a>
!> \endhtmlonly
!
!  Definition:
!  ===========
!
!       SUBROUTINE DLALSA( ICOMPQ, SMLSIZ, N, NRHS, B, LDB, BX, LDBX, U,
!                          LDU, VT, K, DIFL, DIFR, Z, POLES, GIVPTR,
!                          GIVCOL, LDGCOL, PERM, GIVNUM, C, S, WORK,
!                          IWORK, INFO )
!
!       .. Scalar Arguments ..
!       INTEGER            ICOMPQ, INFO, LDB, LDBX, LDGCOL, LDU, N, NRHS,
!      $                   SMLSIZ
!       ..
!       .. Array Arguments ..
!       INTEGER            GIVCOL( LDGCOL, * ), GIVPTR( * ), IWORK( * ),
!      $                   K( * ), PERM( LDGCOL, * )
!       DOUBLE PRECISION   B( LDB, * ), BX( LDBX, * ), C( * ),
!      $                   DIFL( LDU, * ), DIFR( LDU, * ),
!      $                   GIVNUM( LDU, * ), POLES( LDU, * ), S( * ),
!      $                   U( LDU, * ), VT( LDU, * ), WORK( * ),
!      $                   Z( LDU, * )
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> DLALSA is an itermediate step in solving the least squares problem
!> by computing the SVD of the coefficient matrix in compact form (The
!> singular vectors are computed as products of simple orthorgonal
!> matrices.).
!>
!> If ICOMPQ = 0, DLALSA applies the inverse of the left singular vector
!> matrix of an upper bidiagonal matrix to the right hand side; and if
!> ICOMPQ = 1, DLALSA applies the right singular vector matrix to the
!> right hand side. The singular vector matrices were generated in
!> compact form by DLALSA.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] ICOMPQ
!> \verbatim
!>          ICOMPQ is INTEGER
!>         Specifies whether the left or the right singular vector
!>         matrix is involved.
!>         = 0: Left singular vector matrix
!>         = 1: Right singular vector matrix
!> \endverbatim
!>
!> \param[in] SMLSIZ
!> \verbatim
!>          SMLSIZ is INTEGER
!>         The maximum size of the subproblems at the bottom of the
!>         computation tree.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>         The row and column dimensions of the upper bidiagonal matrix.
!> \endverbatim
!>
!> \param[in] NRHS
!> \verbatim
!>          NRHS is INTEGER
!>         The number of columns of B and BX. NRHS must be at least 1.
!> \endverbatim
!>
!> \param[in,out] B
!> \verbatim
!>          B is DOUBLE PRECISION array, dimension ( LDB, NRHS )
!>         On input, B contains the right hand sides of the least
!>         squares problem in rows 1 through M.
!>         On output, B contains the solution X in rows 1 through N.
!> \endverbatim
!>
!> \param[in] LDB
!> \verbatim
!>          LDB is INTEGER
!>         The leading dimension of B in the calling subprogram.
!>         LDB must be at least max(1,MAX( M, N ) ).
!> \endverbatim
!>
!> \param[out] BX
!> \verbatim
!>          BX is DOUBLE PRECISION array, dimension ( LDBX, NRHS )
!>         On exit, the result of applying the left or right singular
!>         vector matrix to B.
!> \endverbatim
!>
!> \param[in] LDBX
!> \verbatim
!>          LDBX is INTEGER
!>         The leading dimension of BX.
!> \endverbatim
!>
!> \param[in] U
!> \verbatim
!>          U is DOUBLE PRECISION array, dimension ( LDU, SMLSIZ ).
!>         On entry, U contains the left singular vector matrices of all
!>         subproblems at the bottom level.
!> \endverbatim
!>
!> \param[in] LDU
!> \verbatim
!>          LDU is INTEGER, LDU = > N.
!>         The leading dimension of arrays U, VT, DIFL, DIFR,
!>         POLES, GIVNUM, and Z.
!> \endverbatim
!>
!> \param[in] VT
!> \verbatim
!>          VT is DOUBLE PRECISION array, dimension ( LDU, SMLSIZ+1 ).
!>         On entry, VT**T contains the right singular vector matrices of
!>         all subproblems at the bottom level.
!> \endverbatim
!>
!> \param[in] K
!> \verbatim
!>          K is INTEGER array, dimension ( N ).
!> \endverbatim
!>
!> \param[in] DIFL
!> \verbatim
!>          DIFL is DOUBLE PRECISION array, dimension ( LDU, NLVL ).
!>         where NLVL = INT(log_2 (N/(SMLSIZ+1))) + 1.
!> \endverbatim
!>
!> \param[in] DIFR
!> \verbatim
!>          DIFR is DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ).
!>         On entry, DIFL(*, I) and DIFR(*, 2 * I -1) record
!>         distances between singular values on the I-th level and
!>         singular values on the (I -1)-th level, and DIFR(*, 2 * I)
!>         record the normalizing factors of the right singular vectors
!>         matrices of subproblems on I-th level.
!> \endverbatim
!>
!> \param[in] Z
!> \verbatim
!>          Z is DOUBLE PRECISION array, dimension ( LDU, NLVL ).
!>         On entry, Z(1, I) contains the components of the deflation-
!>         adjusted updating row vector for subproblems on the I-th
!>         level.
!> \endverbatim
!>
!> \param[in] POLES
!> \verbatim
!>          POLES is DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ).
!>         On entry, POLES(*, 2 * I -1: 2 * I) contains the new and old
!>         singular values involved in the secular equations on the I-th
!>         level.
!> \endverbatim
!>
!> \param[in] GIVPTR
!> \verbatim
!>          GIVPTR is INTEGER array, dimension ( N ).
!>         On entry, GIVPTR( I ) records the number of Givens
!>         rotations performed on the I-th problem on the computation
!>         tree.
!> \endverbatim
!>
!> \param[in] GIVCOL
!> \verbatim
!>          GIVCOL is INTEGER array, dimension ( LDGCOL, 2 * NLVL ).
!>         On entry, for each I, GIVCOL(*, 2 * I - 1: 2 * I) records the
!>         locations of Givens rotations performed on the I-th level on
!>         the computation tree.
!> \endverbatim
!>
!> \param[in] LDGCOL
!> \verbatim
!>          LDGCOL is INTEGER, LDGCOL = > N.
!>         The leading dimension of arrays GIVCOL and PERM.
!> \endverbatim
!>
!> \param[in] PERM
!> \verbatim
!>          PERM is INTEGER array, dimension ( LDGCOL, NLVL ).
!>         On entry, PERM(*, I) records permutations done on the I-th
!>         level of the computation tree.
!> \endverbatim
!>
!> \param[in] GIVNUM
!> \verbatim
!>          GIVNUM is DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ).
!>         On entry, GIVNUM(*, 2 *I -1 : 2 * I) records the C- and S-
!>         values of Givens rotations performed on the I-th level on the
!>         computation tree.
!> \endverbatim
!>
!> \param[in] C
!> \verbatim
!>          C is DOUBLE PRECISION array, dimension ( N ).
!>         On entry, if the I-th subproblem is not square,
!>         C( I ) contains the C-value of a Givens rotation related to
!>         the right null space of the I-th subproblem.
!> \endverbatim
!>
!> \param[in] S
!> \verbatim
!>          S is DOUBLE PRECISION array, dimension ( N ).
!>         On entry, if the I-th subproblem is not square,
!>         S( I ) contains the S-value of a Givens rotation related to
!>         the right null space of the I-th subproblem.
!> \endverbatim
!>
!> \param[out] WORK
!> \verbatim
!>          WORK is DOUBLE PRECISION array.
!>         The dimension must be at least N.
!> \endverbatim
!>
!> \param[out] IWORK
!> \verbatim
!>          IWORK is INTEGER array.
!>         The dimension must be at least 3 * N
!> \endverbatim
!>
!> \param[out] INFO
!> \verbatim
!>          INFO is INTEGER
!>          = 0:  successful exit.
!>          < 0:  if INFO = -i, the i-th argument had an illegal value.
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date November 2011
!
!> \ingroup doubleOTHERcomputational
!
!> \par Contributors:
!  ==================
!>
!>     Ming Gu and Ren-Cang Li, Computer Science Division, University of
!>       California at Berkeley, USA \n
!>     Osni Marques, LBNL/NERSC, USA \n
!
!  =====================================================================
      SUBROUTINE DLALSA( ICOMPQ, SMLSIZ, N, NRHS, B, LDB, BX, LDBX, U, &
     &                   LDU, VT, K, DIFL, DIFR, Z, POLES, GIVPTR, &
     &                   GIVCOL, LDGCOL, PERM, GIVNUM, C, S, WORK, &
     &                   IWORK, INFO )
!
!  -- LAPACK computational routine (version 3.4.0) --
!  -- LAPACK is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     November 2011
!
!     .. Scalar Arguments ..
      INTEGER            ICOMPQ, INFO, LDB, LDBX, LDGCOL, LDU, N, NRHS, &
     &                   SMLSIZ
!     ..
!     .. Array Arguments ..
      INTEGER            GIVCOL( LDGCOL, * ), GIVPTR( * ), IWORK( * ), &
     &                   K( * ), PERM( LDGCOL, * )
      DOUBLE PRECISION   B( LDB, * ), BX( LDBX, * ), C( * ), &
     &                   DIFL( LDU, * ), DIFR( LDU, * ), &
     &                   GIVNUM( LDU, * ), POLES( LDU, * ), S( * ), &
     &                   U( LDU, * ), VT( LDU, * ), WORK( * ), &
     &                   Z( LDU, * )
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
!     ..
!     .. Local Scalars ..
      INTEGER            I, I1, IC, IM1, INODE, J, LF, LL, LVL, LVL2, &
     &                   ND, NDB1, NDIML, NDIMR, NL, NLF, NLP1, NLVL, &
     &                   NR, NRF, NRP1, SQRE
!     ..
!     .. External Subroutines ..
      EXTERNAL           DCOPY, DGEMM, DLALS0, DLASDT, XERBLA
!     ..
!     .. Executable Statements ..
!
!     Test the input parameters.
!
      INFO = 0
!
      IF( ( ICOMPQ.LT.0 ) .OR. ( ICOMPQ.GT.1 ) ) THEN
         INFO = -1
      ELSE IF( SMLSIZ.LT.3 ) THEN
         INFO = -2
      ELSE IF( N.LT.SMLSIZ ) THEN
         INFO = -3
      ELSE IF( NRHS.LT.1 ) THEN
         INFO = -4
      ELSE IF( LDB.LT.N ) THEN
         INFO = -6
      ELSE IF( LDBX.LT.N ) THEN
         INFO = -8
      ELSE IF( LDU.LT.N ) THEN
         INFO = -10
      ELSE IF( LDGCOL.LT.N ) THEN
         INFO = -19
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DLALSA', -INFO )
         RETURN
      END IF
!
!     Book-keeping and  setting up the computation tree.
!
      INODE = 1
      NDIML = INODE + N
      NDIMR = NDIML + N
!
      CALL DLASDT( N, NLVL, ND, IWORK( INODE ), IWORK( NDIML ), &
     &             IWORK( NDIMR ), SMLSIZ )
!
!     The following code applies back the left singular vector factors.
!     For applying back the right singular vector factors, go to 50.
!
      IF( ICOMPQ.EQ.1 ) THEN
         GO TO 50
      END IF
!
!     The nodes on the bottom level of the tree were solved
!     by DLASDQ. The corresponding left and right singular vector
!     matrices are in explicit form. First apply back the left
!     singular vector matrices.
!
      NDB1 = ( ND+1 ) / 2
      DO 10 I = NDB1, ND
!
!        IC : center row of each node
!        NL : number of rows of left  subproblem
!        NR : number of rows of right subproblem
!        NLF: starting row of the left   subproblem
!        NRF: starting row of the right  subproblem
!
         I1 = I - 1
         IC = IWORK( INODE+I1 )
         NL = IWORK( NDIML+I1 )
         NR = IWORK( NDIMR+I1 )
         NLF = IC - NL
         NRF = IC + 1
         CALL DGEMM( 'T', 'N', NL, NRHS, NL, ONE, U( NLF, 1 ), LDU, &
     &               B( NLF, 1 ), LDB, ZERO, BX( NLF, 1 ), LDBX )
         CALL DGEMM( 'T', 'N', NR, NRHS, NR, ONE, U( NRF, 1 ), LDU, &
     &               B( NRF, 1 ), LDB, ZERO, BX( NRF, 1 ), LDBX )
   10 CONTINUE
!
!     Next copy the rows of B that correspond to unchanged rows
!     in the bidiagonal matrix to BX.
!
      DO 20 I = 1, ND
         IC = IWORK( INODE+I-1 )
         CALL DCOPY( NRHS, B( IC, 1 ), LDB, BX( IC, 1 ), LDBX )
   20 CONTINUE
!
!     Finally go through the left singular vector matrices of all
!     the other subproblems bottom-up on the tree.
!
      J = 2**NLVL
      SQRE = 0
!
      DO 40 LVL = NLVL, 1, -1
         LVL2 = 2*LVL - 1
!
!        find the first node LF and last node LL on
!        the current level LVL
!
         IF( LVL.EQ.1 ) THEN
            LF = 1
            LL = 1
         ELSE
            LF = 2**( LVL-1 )
            LL = 2*LF - 1
         END IF
         DO 30 I = LF, LL
            IM1 = I - 1
            IC = IWORK( INODE+IM1 )
            NL = IWORK( NDIML+IM1 )
            NR = IWORK( NDIMR+IM1 )
            NLF = IC - NL
            NRF = IC + 1
            J = J - 1
            CALL DLALS0( ICOMPQ, NL, NR, SQRE, NRHS, BX( NLF, 1 ), LDBX, &
     &                   B( NLF, 1 ), LDB, PERM( NLF, LVL ), &
     &                   GIVPTR( J ), GIVCOL( NLF, LVL2 ), LDGCOL, &
     &                   GIVNUM( NLF, LVL2 ), LDU, POLES( NLF, LVL2 ), &
     &                   DIFL( NLF, LVL ), DIFR( NLF, LVL2 ), &
     &                   Z( NLF, LVL ), K( J ), C( J ), S( J ), WORK, &
     &                   INFO )
   30    CONTINUE
   40 CONTINUE
      GO TO 90
!
!     ICOMPQ = 1: applying back the right singular vector factors.
!
   50 CONTINUE
!
!     First now go through the right singular vector matrices of all
!     the tree nodes top-down.
!
      J = 0
      DO 70 LVL = 1, NLVL
         LVL2 = 2*LVL - 1
!
!        Find the first node LF and last node LL on
!        the current level LVL.
!
         IF( LVL.EQ.1 ) THEN
            LF = 1
            LL = 1
         ELSE
            LF = 2**( LVL-1 )
            LL = 2*LF - 1
         END IF
         DO 60 I = LL, LF, -1
            IM1 = I - 1
            IC = IWORK( INODE+IM1 )
            NL = IWORK( NDIML+IM1 )
            NR = IWORK( NDIMR+IM1 )
            NLF = IC - NL
            NRF = IC + 1
            IF( I.EQ.LL ) THEN
               SQRE = 0
            ELSE
               SQRE = 1
            END IF
            J = J + 1
            CALL DLALS0( ICOMPQ, NL, NR, SQRE, NRHS, B( NLF, 1 ), LDB, &
     &                   BX( NLF, 1 ), LDBX, PERM( NLF, LVL ), &
     &                   GIVPTR( J ), GIVCOL( NLF, LVL2 ), LDGCOL, &
     &                   GIVNUM( NLF, LVL2 ), LDU, POLES( NLF, LVL2 ), &
     &                   DIFL( NLF, LVL ), DIFR( NLF, LVL2 ), &
     &                   Z( NLF, LVL ), K( J ), C( J ), S( J ), WORK, &
     &                   INFO )
   60    CONTINUE
   70 CONTINUE
!
!     The nodes on the bottom level of the tree were solved
!     by DLASDQ. The corresponding right singular vector
!     matrices are in explicit form. Apply them back.
!
      NDB1 = ( ND+1 ) / 2
      DO 80 I = NDB1, ND
         I1 = I - 1
         IC = IWORK( INODE+I1 )
         NL = IWORK( NDIML+I1 )
         NR = IWORK( NDIMR+I1 )
         NLP1 = NL + 1
         IF( I.EQ.ND ) THEN
            NRP1 = NR
         ELSE
            NRP1 = NR + 1
         END IF
         NLF = IC - NL
         NRF = IC + 1
         CALL DGEMM( 'T', 'N', NLP1, NRHS, NLP1, ONE, VT( NLF, 1 ), LDU, &
     &               B( NLF, 1 ), LDB, ZERO, BX( NLF, 1 ), LDBX )
         CALL DGEMM( 'T', 'N', NRP1, NRHS, NRP1, ONE, VT( NRF, 1 ), LDU, &
     &               B( NRF, 1 ), LDB, ZERO, BX( NRF, 1 ), LDBX )
   80 CONTINUE
!
   90 CONTINUE
!
      RETURN
!
!     End of DLALSA
!
      END