dlals0.F90 Source File


Source Code

#include "ESMF_LapackBlas.inc"
!> \brief \b DLALS0
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!> \htmlonly
!> Download DLALS0 + dependencies
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlals0.f">
!> [TGZ]</a>
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlals0.f">
!> [ZIP]</a>
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlals0.f">
!> [TXT]</a>
!> \endhtmlonly
!
!  Definition:
!  ===========
!
!       SUBROUTINE DLALS0( ICOMPQ, NL, NR, SQRE, NRHS, B, LDB, BX, LDBX,
!                          PERM, GIVPTR, GIVCOL, LDGCOL, GIVNUM, LDGNUM,
!                          POLES, DIFL, DIFR, Z, K, C, S, WORK, INFO )
!
!       .. Scalar Arguments ..
!       INTEGER            GIVPTR, ICOMPQ, INFO, K, LDB, LDBX, LDGCOL,
!      $                   LDGNUM, NL, NR, NRHS, SQRE
!       DOUBLE PRECISION   C, S
!       ..
!       .. Array Arguments ..
!       INTEGER            GIVCOL( LDGCOL, * ), PERM( * )
!       DOUBLE PRECISION   B( LDB, * ), BX( LDBX, * ), DIFL( * ),
!      $                   DIFR( LDGNUM, * ), GIVNUM( LDGNUM, * ),
!      $                   POLES( LDGNUM, * ), WORK( * ), Z( * )
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> DLALS0 applies back the multiplying factors of either the left or the
!> right singular vector matrix of a diagonal matrix appended by a row
!> to the right hand side matrix B in solving the least squares problem
!> using the divide-and-conquer SVD approach.
!>
!> For the left singular vector matrix, three types of orthogonal
!> matrices are involved:
!>
!> (1L) Givens rotations: the number of such rotations is GIVPTR; the
!>      pairs of columns/rows they were applied to are stored in GIVCOL;
!>      and the C- and S-values of these rotations are stored in GIVNUM.
!>
!> (2L) Permutation. The (NL+1)-st row of B is to be moved to the first
!>      row, and for J=2:N, PERM(J)-th row of B is to be moved to the
!>      J-th row.
!>
!> (3L) The left singular vector matrix of the remaining matrix.
!>
!> For the right singular vector matrix, four types of orthogonal
!> matrices are involved:
!>
!> (1R) The right singular vector matrix of the remaining matrix.
!>
!> (2R) If SQRE = 1, one extra Givens rotation to generate the right
!>      null space.
!>
!> (3R) The inverse transformation of (2L).
!>
!> (4R) The inverse transformation of (1L).
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] ICOMPQ
!> \verbatim
!>          ICOMPQ is INTEGER
!>         Specifies whether singular vectors are to be computed in
!>         factored form:
!>         = 0: Left singular vector matrix.
!>         = 1: Right singular vector matrix.
!> \endverbatim
!>
!> \param[in] NL
!> \verbatim
!>          NL is INTEGER
!>         The row dimension of the upper block. NL >= 1.
!> \endverbatim
!>
!> \param[in] NR
!> \verbatim
!>          NR is INTEGER
!>         The row dimension of the lower block. NR >= 1.
!> \endverbatim
!>
!> \param[in] SQRE
!> \verbatim
!>          SQRE is INTEGER
!>         = 0: the lower block is an NR-by-NR square matrix.
!>         = 1: the lower block is an NR-by-(NR+1) rectangular matrix.
!>
!>         The bidiagonal matrix has row dimension N = NL + NR + 1,
!>         and column dimension M = N + SQRE.
!> \endverbatim
!>
!> \param[in] NRHS
!> \verbatim
!>          NRHS is INTEGER
!>         The number of columns of B and BX. NRHS must be at least 1.
!> \endverbatim
!>
!> \param[in,out] B
!> \verbatim
!>          B is DOUBLE PRECISION array, dimension ( LDB, NRHS )
!>         On input, B contains the right hand sides of the least
!>         squares problem in rows 1 through M. On output, B contains
!>         the solution X in rows 1 through N.
!> \endverbatim
!>
!> \param[in] LDB
!> \verbatim
!>          LDB is INTEGER
!>         The leading dimension of B. LDB must be at least
!>         max(1,MAX( M, N ) ).
!> \endverbatim
!>
!> \param[out] BX
!> \verbatim
!>          BX is DOUBLE PRECISION array, dimension ( LDBX, NRHS )
!> \endverbatim
!>
!> \param[in] LDBX
!> \verbatim
!>          LDBX is INTEGER
!>         The leading dimension of BX.
!> \endverbatim
!>
!> \param[in] PERM
!> \verbatim
!>          PERM is INTEGER array, dimension ( N )
!>         The permutations (from deflation and sorting) applied
!>         to the two blocks.
!> \endverbatim
!>
!> \param[in] GIVPTR
!> \verbatim
!>          GIVPTR is INTEGER
!>         The number of Givens rotations which took place in this
!>         subproblem.
!> \endverbatim
!>
!> \param[in] GIVCOL
!> \verbatim
!>          GIVCOL is INTEGER array, dimension ( LDGCOL, 2 )
!>         Each pair of numbers indicates a pair of rows/columns
!>         involved in a Givens rotation.
!> \endverbatim
!>
!> \param[in] LDGCOL
!> \verbatim
!>          LDGCOL is INTEGER
!>         The leading dimension of GIVCOL, must be at least N.
!> \endverbatim
!>
!> \param[in] GIVNUM
!> \verbatim
!>          GIVNUM is DOUBLE PRECISION array, dimension ( LDGNUM, 2 )
!>         Each number indicates the C or S value used in the
!>         corresponding Givens rotation.
!> \endverbatim
!>
!> \param[in] LDGNUM
!> \verbatim
!>          LDGNUM is INTEGER
!>         The leading dimension of arrays DIFR, POLES and
!>         GIVNUM, must be at least K.
!> \endverbatim
!>
!> \param[in] POLES
!> \verbatim
!>          POLES is DOUBLE PRECISION array, dimension ( LDGNUM, 2 )
!>         On entry, POLES(1:K, 1) contains the new singular
!>         values obtained from solving the secular equation, and
!>         POLES(1:K, 2) is an array containing the poles in the secular
!>         equation.
!> \endverbatim
!>
!> \param[in] DIFL
!> \verbatim
!>          DIFL is DOUBLE PRECISION array, dimension ( K ).
!>         On entry, DIFL(I) is the distance between I-th updated
!>         (undeflated) singular value and the I-th (undeflated) old
!>         singular value.
!> \endverbatim
!>
!> \param[in] DIFR
!> \verbatim
!>          DIFR is DOUBLE PRECISION array, dimension ( LDGNUM, 2 ).
!>         On entry, DIFR(I, 1) contains the distances between I-th
!>         updated (undeflated) singular value and the I+1-th
!>         (undeflated) old singular value. And DIFR(I, 2) is the
!>         normalizing factor for the I-th right singular vector.
!> \endverbatim
!>
!> \param[in] Z
!> \verbatim
!>          Z is DOUBLE PRECISION array, dimension ( K )
!>         Contain the components of the deflation-adjusted updating row
!>         vector.
!> \endverbatim
!>
!> \param[in] K
!> \verbatim
!>          K is INTEGER
!>         Contains the dimension of the non-deflated matrix,
!>         This is the order of the related secular equation. 1 <= K <=N.
!> \endverbatim
!>
!> \param[in] C
!> \verbatim
!>          C is DOUBLE PRECISION
!>         C contains garbage if SQRE =0 and the C-value of a Givens
!>         rotation related to the right null space if SQRE = 1.
!> \endverbatim
!>
!> \param[in] S
!> \verbatim
!>          S is DOUBLE PRECISION
!>         S contains garbage if SQRE =0 and the S-value of a Givens
!>         rotation related to the right null space if SQRE = 1.
!> \endverbatim
!>
!> \param[out] WORK
!> \verbatim
!>          WORK is DOUBLE PRECISION array, dimension ( K )
!> \endverbatim
!>
!> \param[out] INFO
!> \verbatim
!>          INFO is INTEGER
!>          = 0:  successful exit.
!>          < 0:  if INFO = -i, the i-th argument had an illegal value.
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date November 2011
!
!> \ingroup doubleOTHERcomputational
!
!> \par Contributors:
!  ==================
!>
!>     Ming Gu and Ren-Cang Li, Computer Science Division, University of
!>       California at Berkeley, USA \n
!>     Osni Marques, LBNL/NERSC, USA \n
!
!  =====================================================================
      SUBROUTINE DLALS0( ICOMPQ, NL, NR, SQRE, NRHS, B, LDB, BX, LDBX, &
     &                   PERM, GIVPTR, GIVCOL, LDGCOL, GIVNUM, LDGNUM, &
     &                   POLES, DIFL, DIFR, Z, K, C, S, WORK, INFO )
!
!  -- LAPACK computational routine (version 3.4.0) --
!  -- LAPACK is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     November 2011
!
!     .. Scalar Arguments ..
      INTEGER            GIVPTR, ICOMPQ, INFO, K, LDB, LDBX, LDGCOL, &
     &                   LDGNUM, NL, NR, NRHS, SQRE
      DOUBLE PRECISION   C, S
!     ..
!     .. Array Arguments ..
      INTEGER            GIVCOL( LDGCOL, * ), PERM( * )
      DOUBLE PRECISION   B( LDB, * ), BX( LDBX, * ), DIFL( * ), &
     &                   DIFR( LDGNUM, * ), GIVNUM( LDGNUM, * ), &
     &                   POLES( LDGNUM, * ), WORK( * ), Z( * )
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
      DOUBLE PRECISION   ONE, ZERO, NEGONE
      PARAMETER          ( ONE = 1.0D0, ZERO = 0.0D0, NEGONE = -1.0D0 )
!     ..
!     .. Local Scalars ..
      INTEGER            I, J, M, N, NLP1
      DOUBLE PRECISION   DIFLJ, DIFRJ, DJ, DSIGJ, DSIGJP, TEMP
!     ..
!     .. External Subroutines ..
      EXTERNAL           DCOPY, DGEMV, DLACPY, DLASCL, DROT, DSCAL, &
     &                   XERBLA
!     ..
!     .. External Functions ..
      DOUBLE PRECISION   DLAMC3, DNRM2
      EXTERNAL           DLAMC3, DNRM2
!     ..
!     .. Intrinsic Functions ..
      INTRINSIC          MAX
!     ..
!     .. Executable Statements ..
!
!     Test the input parameters.
!
      INFO = 0
!
      IF( ( ICOMPQ.LT.0 ) .OR. ( ICOMPQ.GT.1 ) ) THEN
         INFO = -1
      ELSE IF( NL.LT.1 ) THEN
         INFO = -2
      ELSE IF( NR.LT.1 ) THEN
         INFO = -3
      ELSE IF( ( SQRE.LT.0 ) .OR. ( SQRE.GT.1 ) ) THEN
         INFO = -4
      END IF
!
      N = NL + NR + 1
!
      IF( NRHS.LT.1 ) THEN
         INFO = -5
      ELSE IF( LDB.LT.N ) THEN
         INFO = -7
      ELSE IF( LDBX.LT.N ) THEN
         INFO = -9
      ELSE IF( GIVPTR.LT.0 ) THEN
         INFO = -11
      ELSE IF( LDGCOL.LT.N ) THEN
         INFO = -13
      ELSE IF( LDGNUM.LT.N ) THEN
         INFO = -15
      ELSE IF( K.LT.1 ) THEN
         INFO = -20
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DLALS0', -INFO )
         RETURN
      END IF
!
      M = N + SQRE
      NLP1 = NL + 1
!
      IF( ICOMPQ.EQ.0 ) THEN
!
!        Apply back orthogonal transformations from the left.
!
!        Step (1L): apply back the Givens rotations performed.
!
         DO 10 I = 1, GIVPTR
            CALL DROT( NRHS, B( GIVCOL( I, 2 ), 1 ), LDB, &
     &                 B( GIVCOL( I, 1 ), 1 ), LDB, GIVNUM( I, 2 ), &
     &                 GIVNUM( I, 1 ) )
   10    CONTINUE
!
!        Step (2L): permute rows of B.
!
         CALL DCOPY( NRHS, B( NLP1, 1 ), LDB, BX( 1, 1 ), LDBX )
         DO 20 I = 2, N
            CALL DCOPY( NRHS, B( PERM( I ), 1 ), LDB, BX( I, 1 ), LDBX )
   20    CONTINUE
!
!        Step (3L): apply the inverse of the left singular vector
!        matrix to BX.
!
         IF( K.EQ.1 ) THEN
            CALL DCOPY( NRHS, BX, LDBX, B, LDB )
            IF( Z( 1 ).LT.ZERO ) THEN
               CALL DSCAL( NRHS, NEGONE, B, LDB )
            END IF
         ELSE
            DO 50 J = 1, K
               DIFLJ = DIFL( J )
               DJ = POLES( J, 1 )
               DSIGJ = -POLES( J, 2 )
               IF( J.LT.K ) THEN
                  DIFRJ = -DIFR( J, 1 )
                  DSIGJP = -POLES( J+1, 2 )
               END IF
               IF( ( Z( J ).EQ.ZERO ) .OR. ( POLES( J, 2 ).EQ.ZERO ) ) &
     &              THEN
                  WORK( J ) = ZERO
               ELSE
                  WORK( J ) = -POLES( J, 2 )*Z( J ) / DIFLJ / &
     &                        ( POLES( J, 2 )+DJ )
               END IF
               DO 30 I = 1, J - 1
                  IF( ( Z( I ).EQ.ZERO ) .OR. &
     &                ( POLES( I, 2 ).EQ.ZERO ) ) THEN
                     WORK( I ) = ZERO
                  ELSE
                     WORK( I ) = POLES( I, 2 )*Z( I ) / &
     &                           ( DLAMC3( POLES( I, 2 ), DSIGJ )- &
     &                           DIFLJ ) / ( POLES( I, 2 )+DJ )
                  END IF
   30          CONTINUE
               DO 40 I = J + 1, K
                  IF( ( Z( I ).EQ.ZERO ) .OR. &
     &                ( POLES( I, 2 ).EQ.ZERO ) ) THEN
                     WORK( I ) = ZERO
                  ELSE
                     WORK( I ) = POLES( I, 2 )*Z( I ) / &
     &                           ( DLAMC3( POLES( I, 2 ), DSIGJP )+ &
     &                           DIFRJ ) / ( POLES( I, 2 )+DJ )
                  END IF
   40          CONTINUE
               WORK( 1 ) = NEGONE
               TEMP = DNRM2( K, WORK, 1 )
               CALL DGEMV( 'T', K, NRHS, ONE, BX, LDBX, WORK, 1, ZERO, &
     &                     B( J, 1 ), LDB )
               CALL DLASCL( 'G', 0, 0, TEMP, ONE, 1, NRHS, B( J, 1 ), &
     &                      LDB, INFO )
   50       CONTINUE
         END IF
!
!        Move the deflated rows of BX to B also.
!
         IF( K.LT.MAX( M, N ) ) &
     &      CALL DLACPY( 'A', N-K, NRHS, BX( K+1, 1 ), LDBX, &
     &                   B( K+1, 1 ), LDB )
      ELSE
!
!        Apply back the right orthogonal transformations.
!
!        Step (1R): apply back the new right singular vector matrix
!        to B.
!
         IF( K.EQ.1 ) THEN
            CALL DCOPY( NRHS, B, LDB, BX, LDBX )
         ELSE
            DO 80 J = 1, K
               DSIGJ = POLES( J, 2 )
               IF( Z( J ).EQ.ZERO ) THEN
                  WORK( J ) = ZERO
               ELSE
                  WORK( J ) = -Z( J ) / DIFL( J ) / &
     &                        ( DSIGJ+POLES( J, 1 ) ) / DIFR( J, 2 )
               END IF
               DO 60 I = 1, J - 1
                  IF( Z( J ).EQ.ZERO ) THEN
                     WORK( I ) = ZERO
                  ELSE
                     WORK( I ) = Z( J ) / ( DLAMC3( DSIGJ, -POLES( I+1, &
     &                           2 ) )-DIFR( I, 1 ) ) / &
     &                           ( DSIGJ+POLES( I, 1 ) ) / DIFR( I, 2 )
                  END IF
   60          CONTINUE
               DO 70 I = J + 1, K
                  IF( Z( J ).EQ.ZERO ) THEN
                     WORK( I ) = ZERO
                  ELSE
                     WORK( I ) = Z( J ) / ( DLAMC3( DSIGJ, -POLES( I, &
     &                           2 ) )-DIFL( I ) ) / &
     &                           ( DSIGJ+POLES( I, 1 ) ) / DIFR( I, 2 )
                  END IF
   70          CONTINUE
               CALL DGEMV( 'T', K, NRHS, ONE, B, LDB, WORK, 1, ZERO, &
     &                     BX( J, 1 ), LDBX )
   80       CONTINUE
         END IF
!
!        Step (2R): if SQRE = 1, apply back the rotation that is
!        related to the right null space of the subproblem.
!
         IF( SQRE.EQ.1 ) THEN
            CALL DCOPY( NRHS, B( M, 1 ), LDB, BX( M, 1 ), LDBX )
            CALL DROT( NRHS, BX( 1, 1 ), LDBX, BX( M, 1 ), LDBX, C, S )
         END IF
         IF( K.LT.MAX( M, N ) ) &
     &      CALL DLACPY( 'A', N-K, NRHS, B( K+1, 1 ), LDB, BX( K+1, 1 ), &
     &                   LDBX )
!
!        Step (3R): permute rows of B.
!
         CALL DCOPY( NRHS, BX( 1, 1 ), LDBX, B( NLP1, 1 ), LDB )
         IF( SQRE.EQ.1 ) THEN
            CALL DCOPY( NRHS, BX( M, 1 ), LDBX, B( M, 1 ), LDB )
         END IF
         DO 90 I = 2, N
            CALL DCOPY( NRHS, BX( I, 1 ), LDBX, B( PERM( I ), 1 ), LDB )
   90    CONTINUE
!
!        Step (4R): apply back the Givens rotations performed.
!
         DO 100 I = GIVPTR, 1, -1
            CALL DROT( NRHS, B( GIVCOL( I, 2 ), 1 ), LDB, &
     &                 B( GIVCOL( I, 1 ), 1 ), LDB, GIVNUM( I, 2 ), &
     &                 -GIVNUM( I, 1 ) )
  100    CONTINUE
      END IF
!
      RETURN
!
!     End of DLALS0
!
      END