dlaeda.F90 Source File


Source Code

#include "ESMF_LapackBlas.inc"
!> \brief \b DLAEDA used by sstedc. Computes the Z vector determining the rank-one modification of the diagonal matrix. Used when the original matrix is dense.
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!> \htmlonly
!> Download DLAEDA + dependencies
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaeda.f">
!> [TGZ]</a>
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaeda.f">
!> [ZIP]</a>
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaeda.f">
!> [TXT]</a>
!> \endhtmlonly
!
!  Definition:
!  ===========
!
!       SUBROUTINE DLAEDA( N, TLVLS, CURLVL, CURPBM, PRMPTR, PERM, GIVPTR,
!                          GIVCOL, GIVNUM, Q, QPTR, Z, ZTEMP, INFO )
!
!       .. Scalar Arguments ..
!       INTEGER            CURLVL, CURPBM, INFO, N, TLVLS
!       ..
!       .. Array Arguments ..
!       INTEGER            GIVCOL( 2, * ), GIVPTR( * ), PERM( * ),
!      $                   PRMPTR( * ), QPTR( * )
!       DOUBLE PRECISION   GIVNUM( 2, * ), Q( * ), Z( * ), ZTEMP( * )
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> DLAEDA computes the Z vector corresponding to the merge step in the
!> CURLVLth step of the merge process with TLVLS steps for the CURPBMth
!> problem.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>         The dimension of the symmetric tridiagonal matrix.  N >= 0.
!> \endverbatim
!>
!> \param[in] TLVLS
!> \verbatim
!>          TLVLS is INTEGER
!>         The total number of merging levels in the overall divide and
!>         conquer tree.
!> \endverbatim
!>
!> \param[in] CURLVL
!> \verbatim
!>          CURLVL is INTEGER
!>         The current level in the overall merge routine,
!>         0 <= curlvl <= tlvls.
!> \endverbatim
!>
!> \param[in] CURPBM
!> \verbatim
!>          CURPBM is INTEGER
!>         The current problem in the current level in the overall
!>         merge routine (counting from upper left to lower right).
!> \endverbatim
!>
!> \param[in] PRMPTR
!> \verbatim
!>          PRMPTR is INTEGER array, dimension (N lg N)
!>         Contains a list of pointers which indicate where in PERM a
!>         level's permutation is stored.  PRMPTR(i+1) - PRMPTR(i)
!>         indicates the size of the permutation and incidentally the
!>         size of the full, non-deflated problem.
!> \endverbatim
!>
!> \param[in] PERM
!> \verbatim
!>          PERM is INTEGER array, dimension (N lg N)
!>         Contains the permutations (from deflation and sorting) to be
!>         applied to each eigenblock.
!> \endverbatim
!>
!> \param[in] GIVPTR
!> \verbatim
!>          GIVPTR is INTEGER array, dimension (N lg N)
!>         Contains a list of pointers which indicate where in GIVCOL a
!>         level's Givens rotations are stored.  GIVPTR(i+1) - GIVPTR(i)
!>         indicates the number of Givens rotations.
!> \endverbatim
!>
!> \param[in] GIVCOL
!> \verbatim
!>          GIVCOL is INTEGER array, dimension (2, N lg N)
!>         Each pair of numbers indicates a pair of columns to take place
!>         in a Givens rotation.
!> \endverbatim
!>
!> \param[in] GIVNUM
!> \verbatim
!>          GIVNUM is DOUBLE PRECISION array, dimension (2, N lg N)
!>         Each number indicates the S value to be used in the
!>         corresponding Givens rotation.
!> \endverbatim
!>
!> \param[in] Q
!> \verbatim
!>          Q is DOUBLE PRECISION array, dimension (N**2)
!>         Contains the square eigenblocks from previous levels, the
!>         starting positions for blocks are given by QPTR.
!> \endverbatim
!>
!> \param[in] QPTR
!> \verbatim
!>          QPTR is INTEGER array, dimension (N+2)
!>         Contains a list of pointers which indicate where in Q an
!>         eigenblock is stored.  SQRT( QPTR(i+1) - QPTR(i) ) indicates
!>         the size of the block.
!> \endverbatim
!>
!> \param[out] Z
!> \verbatim
!>          Z is DOUBLE PRECISION array, dimension (N)
!>         On output this vector contains the updating vector (the last
!>         row of the first sub-eigenvector matrix and the first row of
!>         the second sub-eigenvector matrix).
!> \endverbatim
!>
!> \param[out] ZTEMP
!> \verbatim
!>          ZTEMP is DOUBLE PRECISION array, dimension (N)
!> \endverbatim
!>
!> \param[out] INFO
!> \verbatim
!>          INFO is INTEGER
!>          = 0:  successful exit.
!>          < 0:  if INFO = -i, the i-th argument had an illegal value.
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup auxOTHERcomputational
!
!> \par Contributors:
!  ==================
!>
!> Jeff Rutter, Computer Science Division, University of California
!> at Berkeley, USA
!
!  =====================================================================
      SUBROUTINE DLAEDA( N, TLVLS, CURLVL, CURPBM, PRMPTR, PERM, GIVPTR, &
                         GIVCOL, GIVNUM, Q, QPTR, Z, ZTEMP, INFO )
!
!  -- LAPACK computational routine (version 3.7.0) --
!  -- LAPACK is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
      INTEGER            CURLVL, CURPBM, INFO, N, TLVLS
!     ..
!     .. Array Arguments ..
      INTEGER            GIVCOL( 2, * ), GIVPTR( * ), PERM( * ), &
                         PRMPTR( * ), QPTR( * )
      DOUBLE PRECISION   GIVNUM( 2, * ), Q( * ), Z( * ), ZTEMP( * )
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
      DOUBLE PRECISION   ZERO, HALF, ONE
      PARAMETER          ( ZERO = 0.0D0, HALF = 0.5D0, ONE = 1.0D0 )
!     ..
!     .. Local Scalars ..
      INTEGER            BSIZ1, BSIZ2, CURR, I, K, MID, PSIZ1, PSIZ2, &
                         PTR, ZPTR1
!     ..
!     .. External Subroutines ..
      EXTERNAL           DCOPY, DGEMV, DROT, XERBLA
!     ..
!     .. Intrinsic Functions ..
      INTRINSIC          DBLE, INT, SQRT
!     ..
!     .. Executable Statements ..
!
!     Test the input parameters.
!
      INFO = 0
!
      IF( N.LT.0 ) THEN
         INFO = -1
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DLAEDA', -INFO )
         RETURN
      END IF
!
!     Quick return if possible
!
      IF( N.EQ.0 ) &
         RETURN
!
!     Determine location of first number in second half.
!
      MID = N / 2 + 1
!
!     Gather last/first rows of appropriate eigenblocks into center of Z
!
      PTR = 1
!
!     Determine location of lowest level subproblem in the full storage
!     scheme
!
      CURR = PTR + CURPBM*2**CURLVL + 2**( CURLVL-1 ) - 1
!
!     Determine size of these matrices.  We add HALF to the value of
!     the SQRT in case the machine underestimates one of these square
!     roots.
!
      BSIZ1 = INT( HALF+SQRT( DBLE( QPTR( CURR+1 )-QPTR( CURR ) ) ) )
      BSIZ2 = INT( HALF+SQRT( DBLE( QPTR( CURR+2 )-QPTR( CURR+1 ) ) ) )
      DO 10 K = 1, MID - BSIZ1 - 1
         Z( K ) = ZERO
   10 CONTINUE
      CALL DCOPY( BSIZ1, Q( QPTR( CURR )+BSIZ1-1 ), BSIZ1, &
                  Z( MID-BSIZ1 ), 1 )
      CALL DCOPY( BSIZ2, Q( QPTR( CURR+1 ) ), BSIZ2, Z( MID ), 1 )
      DO 20 K = MID + BSIZ2, N
         Z( K ) = ZERO
   20 CONTINUE
!
!     Loop through remaining levels 1 -> CURLVL applying the Givens
!     rotations and permutation and then multiplying the center matrices
!     against the current Z.
!
      PTR = 2**TLVLS + 1
      DO 70 K = 1, CURLVL - 1
         CURR = PTR + CURPBM*2**( CURLVL-K ) + 2**( CURLVL-K-1 ) - 1
         PSIZ1 = PRMPTR( CURR+1 ) - PRMPTR( CURR )
         PSIZ2 = PRMPTR( CURR+2 ) - PRMPTR( CURR+1 )
         ZPTR1 = MID - PSIZ1
!
!       Apply Givens at CURR and CURR+1
!
         DO 30 I = GIVPTR( CURR ), GIVPTR( CURR+1 ) - 1
            CALL DROT( 1, Z( ZPTR1+GIVCOL( 1, I )-1 ), 1, &
                       Z( ZPTR1+GIVCOL( 2, I )-1 ), 1, GIVNUM( 1, I ), &
                       GIVNUM( 2, I ) )
   30    CONTINUE
         DO 40 I = GIVPTR( CURR+1 ), GIVPTR( CURR+2 ) - 1
            CALL DROT( 1, Z( MID-1+GIVCOL( 1, I ) ), 1, &
                       Z( MID-1+GIVCOL( 2, I ) ), 1, GIVNUM( 1, I ), &
                       GIVNUM( 2, I ) )
   40    CONTINUE
         PSIZ1 = PRMPTR( CURR+1 ) - PRMPTR( CURR )
         PSIZ2 = PRMPTR( CURR+2 ) - PRMPTR( CURR+1 )
         DO 50 I = 0, PSIZ1 - 1
            ZTEMP( I+1 ) = Z( ZPTR1+PERM( PRMPTR( CURR )+I )-1 )
   50    CONTINUE
         DO 60 I = 0, PSIZ2 - 1
            ZTEMP( PSIZ1+I+1 ) = Z( MID+PERM( PRMPTR( CURR+1 )+I )-1 )
   60    CONTINUE
!
!        Multiply Blocks at CURR and CURR+1
!
!        Determine size of these matrices.  We add HALF to the value of
!        the SQRT in case the machine underestimates one of these
!        square roots.
!
         BSIZ1 = INT( HALF+SQRT( DBLE( QPTR( CURR+1 )-QPTR( CURR ) ) ) )
         BSIZ2 = INT( HALF+SQRT( DBLE( QPTR( CURR+2 )-QPTR( CURR+ &
                 1 ) ) ) )
         IF( BSIZ1.GT.0 ) THEN
            CALL DGEMV( 'T', BSIZ1, BSIZ1, ONE, Q( QPTR( CURR ) ), &
                        BSIZ1, ZTEMP( 1 ), 1, ZERO, Z( ZPTR1 ), 1 )
         END IF
         CALL DCOPY( PSIZ1-BSIZ1, ZTEMP( BSIZ1+1 ), 1, Z( ZPTR1+BSIZ1 ), &
                     1 )
         IF( BSIZ2.GT.0 ) THEN
            CALL DGEMV( 'T', BSIZ2, BSIZ2, ONE, Q( QPTR( CURR+1 ) ), &
                        BSIZ2, ZTEMP( PSIZ1+1 ), 1, ZERO, Z( MID ), 1 )
         END IF
         CALL DCOPY( PSIZ2-BSIZ2, ZTEMP( PSIZ1+BSIZ2+1 ), 1, &
                     Z( MID+BSIZ2 ), 1 )
!
         PTR = PTR + 2**( TLVLS-K )
   70 CONTINUE
!
      RETURN
!
!     End of DLAEDA
!
      END