dlaed8.F90 Source File


Source Code

#include "ESMF_LapackBlas.inc"
!> \brief \b DLAED8 used by sstedc. Merges eigenvalues and deflates secular equation. Used when the original matrix is dense.
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!> \htmlonly
!> Download DLAED8 + dependencies
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaed8.f">
!> [TGZ]</a>
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaed8.f">
!> [ZIP]</a>
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaed8.f">
!> [TXT]</a>
!> \endhtmlonly
!
!  Definition:
!  ===========
!
!       SUBROUTINE DLAED8( ICOMPQ, K, N, QSIZ, D, Q, LDQ, INDXQ, RHO,
!                          CUTPNT, Z, DLAMDA, Q2, LDQ2, W, PERM, GIVPTR,
!                          GIVCOL, GIVNUM, INDXP, INDX, INFO )
!
!       .. Scalar Arguments ..
!       INTEGER            CUTPNT, GIVPTR, ICOMPQ, INFO, K, LDQ, LDQ2, N,
!      $                   QSIZ
!       DOUBLE PRECISION   RHO
!       ..
!       .. Array Arguments ..
!       INTEGER            GIVCOL( 2, * ), INDX( * ), INDXP( * ),
!      $                   INDXQ( * ), PERM( * )
!       DOUBLE PRECISION   D( * ), DLAMDA( * ), GIVNUM( 2, * ),
!      $                   Q( LDQ, * ), Q2( LDQ2, * ), W( * ), Z( * )
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> DLAED8 merges the two sets of eigenvalues together into a single
!> sorted set.  Then it tries to deflate the size of the problem.
!> There are two ways in which deflation can occur:  when two or more
!> eigenvalues are close together or if there is a tiny element in the
!> Z vector.  For each such occurrence the order of the related secular
!> equation problem is reduced by one.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] ICOMPQ
!> \verbatim
!>          ICOMPQ is INTEGER
!>          = 0:  Compute eigenvalues only.
!>          = 1:  Compute eigenvectors of original dense symmetric matrix
!>                also.  On entry, Q contains the orthogonal matrix used
!>                to reduce the original matrix to tridiagonal form.
!> \endverbatim
!>
!> \param[out] K
!> \verbatim
!>          K is INTEGER
!>         The number of non-deflated eigenvalues, and the order of the
!>         related secular equation.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>         The dimension of the symmetric tridiagonal matrix.  N >= 0.
!> \endverbatim
!>
!> \param[in] QSIZ
!> \verbatim
!>          QSIZ is INTEGER
!>         The dimension of the orthogonal matrix used to reduce
!>         the full matrix to tridiagonal form.  QSIZ >= N if ICOMPQ = 1.
!> \endverbatim
!>
!> \param[in,out] D
!> \verbatim
!>          D is DOUBLE PRECISION array, dimension (N)
!>         On entry, the eigenvalues of the two submatrices to be
!>         combined.  On exit, the trailing (N-K) updated eigenvalues
!>         (those which were deflated) sorted into increasing order.
!> \endverbatim
!>
!> \param[in,out] Q
!> \verbatim
!>          Q is DOUBLE PRECISION array, dimension (LDQ,N)
!>         If ICOMPQ = 0, Q is not referenced.  Otherwise,
!>         on entry, Q contains the eigenvectors of the partially solved
!>         system which has been previously updated in matrix
!>         multiplies with other partially solved eigensystems.
!>         On exit, Q contains the trailing (N-K) updated eigenvectors
!>         (those which were deflated) in its last N-K columns.
!> \endverbatim
!>
!> \param[in] LDQ
!> \verbatim
!>          LDQ is INTEGER
!>         The leading dimension of the array Q.  LDQ >= max(1,N).
!> \endverbatim
!>
!> \param[in] INDXQ
!> \verbatim
!>          INDXQ is INTEGER array, dimension (N)
!>         The permutation which separately sorts the two sub-problems
!>         in D into ascending order.  Note that elements in the second
!>         half of this permutation must first have CUTPNT added to
!>         their values in order to be accurate.
!> \endverbatim
!>
!> \param[in,out] RHO
!> \verbatim
!>          RHO is DOUBLE PRECISION
!>         On entry, the off-diagonal element associated with the rank-1
!>         cut which originally split the two submatrices which are now
!>         being recombined.
!>         On exit, RHO has been modified to the value required by
!>         DLAED3.
!> \endverbatim
!>
!> \param[in] CUTPNT
!> \verbatim
!>          CUTPNT is INTEGER
!>         The location of the last eigenvalue in the leading
!>         sub-matrix.  min(1,N) <= CUTPNT <= N.
!> \endverbatim
!>
!> \param[in] Z
!> \verbatim
!>          Z is DOUBLE PRECISION array, dimension (N)
!>         On entry, Z contains the updating vector (the last row of
!>         the first sub-eigenvector matrix and the first row of the
!>         second sub-eigenvector matrix).
!>         On exit, the contents of Z are destroyed by the updating
!>         process.
!> \endverbatim
!>
!> \param[out] DLAMDA
!> \verbatim
!>          DLAMDA is DOUBLE PRECISION array, dimension (N)
!>         A copy of the first K eigenvalues which will be used by
!>         DLAED3 to form the secular equation.
!> \endverbatim
!>
!> \param[out] Q2
!> \verbatim
!>          Q2 is DOUBLE PRECISION array, dimension (LDQ2,N)
!>         If ICOMPQ = 0, Q2 is not referenced.  Otherwise,
!>         a copy of the first K eigenvectors which will be used by
!>         DLAED7 in a matrix multiply (DGEMM) to update the new
!>         eigenvectors.
!> \endverbatim
!>
!> \param[in] LDQ2
!> \verbatim
!>          LDQ2 is INTEGER
!>         The leading dimension of the array Q2.  LDQ2 >= max(1,N).
!> \endverbatim
!>
!> \param[out] W
!> \verbatim
!>          W is DOUBLE PRECISION array, dimension (N)
!>         The first k values of the final deflation-altered z-vector and
!>         will be passed to DLAED3.
!> \endverbatim
!>
!> \param[out] PERM
!> \verbatim
!>          PERM is INTEGER array, dimension (N)
!>         The permutations (from deflation and sorting) to be applied
!>         to each eigenblock.
!> \endverbatim
!>
!> \param[out] GIVPTR
!> \verbatim
!>          GIVPTR is INTEGER
!>         The number of Givens rotations which took place in this
!>         subproblem.
!> \endverbatim
!>
!> \param[out] GIVCOL
!> \verbatim
!>          GIVCOL is INTEGER array, dimension (2, N)
!>         Each pair of numbers indicates a pair of columns to take place
!>         in a Givens rotation.
!> \endverbatim
!>
!> \param[out] GIVNUM
!> \verbatim
!>          GIVNUM is DOUBLE PRECISION array, dimension (2, N)
!>         Each number indicates the S value to be used in the
!>         corresponding Givens rotation.
!> \endverbatim
!>
!> \param[out] INDXP
!> \verbatim
!>          INDXP is INTEGER array, dimension (N)
!>         The permutation used to place deflated values of D at the end
!>         of the array.  INDXP(1:K) points to the nondeflated D-values
!>         and INDXP(K+1:N) points to the deflated eigenvalues.
!> \endverbatim
!>
!> \param[out] INDX
!> \verbatim
!>          INDX is INTEGER array, dimension (N)
!>         The permutation used to sort the contents of D into ascending
!>         order.
!> \endverbatim
!>
!> \param[out] INFO
!> \verbatim
!>          INFO is INTEGER
!>          = 0:  successful exit.
!>          < 0:  if INFO = -i, the i-th argument had an illegal value.
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup auxOTHERcomputational
!
!> \par Contributors:
!  ==================
!>
!> Jeff Rutter, Computer Science Division, University of California
!> at Berkeley, USA
!
!  =====================================================================
      SUBROUTINE DLAED8( ICOMPQ, K, N, QSIZ, D, Q, LDQ, INDXQ, RHO, &
                         CUTPNT, Z, DLAMDA, Q2, LDQ2, W, PERM, GIVPTR, &
                         GIVCOL, GIVNUM, INDXP, INDX, INFO )
!
!  -- LAPACK computational routine (version 3.7.0) --
!  -- LAPACK is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
      INTEGER            CUTPNT, GIVPTR, ICOMPQ, INFO, K, LDQ, LDQ2, N, &
                         QSIZ
      DOUBLE PRECISION   RHO
!     ..
!     .. Array Arguments ..
      INTEGER            GIVCOL( 2, * ), INDX( * ), INDXP( * ), &
                         INDXQ( * ), PERM( * )
      DOUBLE PRECISION   D( * ), DLAMDA( * ), GIVNUM( 2, * ), &
                         Q( LDQ, * ), Q2( LDQ2, * ), W( * ), Z( * )
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
      DOUBLE PRECISION   MONE, ZERO, ONE, TWO, EIGHT
      PARAMETER          ( MONE = -1.0D0, ZERO = 0.0D0, ONE = 1.0D0, &
                         TWO = 2.0D0, EIGHT = 8.0D0 )
!     ..
!     .. Local Scalars ..
!
      INTEGER            I, IMAX, J, JLAM, JMAX, JP, K2, N1, N1P1, N2
      DOUBLE PRECISION   C, EPS, S, T, TAU, TOL
!     ..
!     .. External Functions ..
      INTEGER            IDAMAX
      DOUBLE PRECISION   DLAMCH, DLAPY2
      EXTERNAL           IDAMAX, DLAMCH, DLAPY2
!     ..
!     .. External Subroutines ..
      EXTERNAL           DCOPY, DLACPY, DLAMRG, DROT, DSCAL, XERBLA
!     ..
!     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX, MIN, SQRT
!     ..
!     .. Executable Statements ..
!
!     Test the input parameters.
!
      INFO = 0
!
      IF( ICOMPQ.LT.0 .OR. ICOMPQ.GT.1 ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -3
      ELSE IF( ICOMPQ.EQ.1 .AND. QSIZ.LT.N ) THEN
         INFO = -4
      ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN
         INFO = -7
      ELSE IF( CUTPNT.LT.MIN( 1, N ) .OR. CUTPNT.GT.N ) THEN
         INFO = -10
      ELSE IF( LDQ2.LT.MAX( 1, N ) ) THEN
         INFO = -14
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DLAED8', -INFO )
         RETURN
      END IF
!
!     Need to initialize GIVPTR to O here in case of quick exit
!     to prevent an unspecified code behavior (usually sigfault)
!     when IWORK array on entry to *stedc is not zeroed
!     (or at least some IWORK entries which used in *laed7 for GIVPTR).
!
      GIVPTR = 0
!
!     Quick return if possible
!
      IF( N.EQ.0 ) &
         RETURN
!
      N1 = CUTPNT
      N2 = N - N1
      N1P1 = N1 + 1
!
      IF( RHO.LT.ZERO ) THEN
         CALL DSCAL( N2, MONE, Z( N1P1 ), 1 )
      END IF
!
!     Normalize z so that norm(z) = 1
!
      T = ONE / SQRT( TWO )
      DO 10 J = 1, N
         INDX( J ) = J
   10 CONTINUE
      CALL DSCAL( N, T, Z, 1 )
      RHO = ABS( TWO*RHO )
!
!     Sort the eigenvalues into increasing order
!
      DO 20 I = CUTPNT + 1, N
         INDXQ( I ) = INDXQ( I ) + CUTPNT
   20 CONTINUE
      DO 30 I = 1, N
         DLAMDA( I ) = D( INDXQ( I ) )
         W( I ) = Z( INDXQ( I ) )
   30 CONTINUE
      I = 1
      J = CUTPNT + 1
      CALL DLAMRG( N1, N2, DLAMDA, 1, 1, INDX )
      DO 40 I = 1, N
         D( I ) = DLAMDA( INDX( I ) )
         Z( I ) = W( INDX( I ) )
   40 CONTINUE
!
!     Calculate the allowable deflation tolerence
!
      IMAX = IDAMAX( N, Z, 1 )
      JMAX = IDAMAX( N, D, 1 )
      EPS = DLAMCH( 'Epsilon' )
      TOL = EIGHT*EPS*ABS( D( JMAX ) )
!
!     If the rank-1 modifier is small enough, no more needs to be done
!     except to reorganize Q so that its columns correspond with the
!     elements in D.
!
      IF( RHO*ABS( Z( IMAX ) ).LE.TOL ) THEN
         K = 0
         IF( ICOMPQ.EQ.0 ) THEN
            DO 50 J = 1, N
               PERM( J ) = INDXQ( INDX( J ) )
   50       CONTINUE
         ELSE
            DO 60 J = 1, N
               PERM( J ) = INDXQ( INDX( J ) )
               CALL DCOPY( QSIZ, Q( 1, PERM( J ) ), 1, Q2( 1, J ), 1 )
   60       CONTINUE
            CALL DLACPY( 'A', QSIZ, N, Q2( 1, 1 ), LDQ2, Q( 1, 1 ), &
                         LDQ )
         END IF
         RETURN
      END IF
!
!     If there are multiple eigenvalues then the problem deflates.  Here
!     the number of equal eigenvalues are found.  As each equal
!     eigenvalue is found, an elementary reflector is computed to rotate
!     the corresponding eigensubspace so that the corresponding
!     components of Z are zero in this new basis.
!
      K = 0
      K2 = N + 1
      DO 70 J = 1, N
         IF( RHO*ABS( Z( J ) ).LE.TOL ) THEN
!
!           Deflate due to small z component.
!
            K2 = K2 - 1
            INDXP( K2 ) = J
            IF( J.EQ.N ) &
               GO TO 110
         ELSE
            JLAM = J
            GO TO 80
         END IF
   70 CONTINUE
   80 CONTINUE
      J = J + 1
      IF( J.GT.N ) &
         GO TO 100
      IF( RHO*ABS( Z( J ) ).LE.TOL ) THEN
!
!        Deflate due to small z component.
!
         K2 = K2 - 1
         INDXP( K2 ) = J
      ELSE
!
!        Check if eigenvalues are close enough to allow deflation.
!
         S = Z( JLAM )
         C = Z( J )
!
!        Find sqrt(a**2+b**2) without overflow or
!        destructive underflow.
!
         TAU = DLAPY2( C, S )
         T = D( J ) - D( JLAM )
         C = C / TAU
         S = -S / TAU
         IF( ABS( T*C*S ).LE.TOL ) THEN
!
!           Deflation is possible.
!
            Z( J ) = TAU
            Z( JLAM ) = ZERO
!
!           Record the appropriate Givens rotation
!
            GIVPTR = GIVPTR + 1
            GIVCOL( 1, GIVPTR ) = INDXQ( INDX( JLAM ) )
            GIVCOL( 2, GIVPTR ) = INDXQ( INDX( J ) )
            GIVNUM( 1, GIVPTR ) = C
            GIVNUM( 2, GIVPTR ) = S
            IF( ICOMPQ.EQ.1 ) THEN
               CALL DROT( QSIZ, Q( 1, INDXQ( INDX( JLAM ) ) ), 1, &
                          Q( 1, INDXQ( INDX( J ) ) ), 1, C, S )
            END IF
            T = D( JLAM )*C*C + D( J )*S*S
            D( J ) = D( JLAM )*S*S + D( J )*C*C
            D( JLAM ) = T
            K2 = K2 - 1
            I = 1
   90       CONTINUE
            IF( K2+I.LE.N ) THEN
               IF( D( JLAM ).LT.D( INDXP( K2+I ) ) ) THEN
                  INDXP( K2+I-1 ) = INDXP( K2+I )
                  INDXP( K2+I ) = JLAM
                  I = I + 1
                  GO TO 90
               ELSE
                  INDXP( K2+I-1 ) = JLAM
               END IF
            ELSE
               INDXP( K2+I-1 ) = JLAM
            END IF
            JLAM = J
         ELSE
            K = K + 1
            W( K ) = Z( JLAM )
            DLAMDA( K ) = D( JLAM )
            INDXP( K ) = JLAM
            JLAM = J
         END IF
      END IF
      GO TO 80
  100 CONTINUE
!
!     Record the last eigenvalue.
!
      K = K + 1
      W( K ) = Z( JLAM )
      DLAMDA( K ) = D( JLAM )
      INDXP( K ) = JLAM
!
  110 CONTINUE
!
!     Sort the eigenvalues and corresponding eigenvectors into DLAMDA
!     and Q2 respectively.  The eigenvalues/vectors which were not
!     deflated go into the first K slots of DLAMDA and Q2 respectively,
!     while those which were deflated go into the last N - K slots.
!
      IF( ICOMPQ.EQ.0 ) THEN
         DO 120 J = 1, N
            JP = INDXP( J )
            DLAMDA( J ) = D( JP )
            PERM( J ) = INDXQ( INDX( JP ) )
  120    CONTINUE
      ELSE
         DO 130 J = 1, N
            JP = INDXP( J )
            DLAMDA( J ) = D( JP )
            PERM( J ) = INDXQ( INDX( JP ) )
            CALL DCOPY( QSIZ, Q( 1, PERM( J ) ), 1, Q2( 1, J ), 1 )
  130    CONTINUE
      END IF
!
!     The deflated eigenvalues and their corresponding vectors go back
!     into the last N - K slots of D and Q respectively.
!
      IF( K.LT.N ) THEN
         IF( ICOMPQ.EQ.0 ) THEN
            CALL DCOPY( N-K, DLAMDA( K+1 ), 1, D( K+1 ), 1 )
         ELSE
            CALL DCOPY( N-K, DLAMDA( K+1 ), 1, D( K+1 ), 1 )
            CALL DLACPY( 'A', QSIZ, N-K, Q2( 1, K+1 ), LDQ2, &
                         Q( 1, K+1 ), LDQ )
         END IF
      END IF
!
      RETURN
!
!     End of DLAED8
!
      END