dlaed6.F90 Source File


Source Code

#include "ESMF_LapackBlas.inc"
!> \brief \b DLAED6
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!> \htmlonly
!> Download DLAED6 + dependencies
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaed6.f">
!> [TGZ]</a>
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaed6.f">
!> [ZIP]</a>
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaed6.f">
!> [TXT]</a>
!> \endhtmlonly
!
!  Definition:
!  ===========
!
!       SUBROUTINE DLAED6( KNITER, ORGATI, RHO, D, Z, FINIT, TAU, INFO )
!
!       .. Scalar Arguments ..
!       LOGICAL            ORGATI
!       INTEGER            INFO, KNITER
!       DOUBLE PRECISION   FINIT, RHO, TAU
!       ..
!       .. Array Arguments ..
!       DOUBLE PRECISION   D( 3 ), Z( 3 )
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> DLAED6 computes the positive or negative root (closest to the origin)
!> of
!>                  z(1)        z(2)        z(3)
!> f(x) =   rho + --------- + ---------- + ---------
!>                 d(1)-x      d(2)-x      d(3)-x
!>
!> It is assumed that
!>
!>       if ORGATI = .true. the root is between d(2) and d(3);
!>       otherwise it is between d(1) and d(2)
!>
!> This routine will be called by DLAED4 when necessary. In most cases,
!> the root sought is the smallest in magnitude, though it might not be
!> in some extremely rare situations.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] KNITER
!> \verbatim
!>          KNITER is INTEGER
!>               Refer to DLAED4 for its significance.
!> \endverbatim
!>
!> \param[in] ORGATI
!> \verbatim
!>          ORGATI is LOGICAL
!>               If ORGATI is true, the needed root is between d(2) and
!>               d(3); otherwise it is between d(1) and d(2).  See
!>               DLAED4 for further details.
!> \endverbatim
!>
!> \param[in] RHO
!> \verbatim
!>          RHO is DOUBLE PRECISION
!>               Refer to the equation f(x) above.
!> \endverbatim
!>
!> \param[in] D
!> \verbatim
!>          D is DOUBLE PRECISION array, dimension (3)
!>               D satisfies d(1) < d(2) < d(3).
!> \endverbatim
!>
!> \param[in] Z
!> \verbatim
!>          Z is DOUBLE PRECISION array, dimension (3)
!>               Each of the elements in z must be positive.
!> \endverbatim
!>
!> \param[in] FINIT
!> \verbatim
!>          FINIT is DOUBLE PRECISION
!>               The value of f at 0. It is more accurate than the one
!>               evaluated inside this routine (if someone wants to do
!>               so).
!> \endverbatim
!>
!> \param[out] TAU
!> \verbatim
!>          TAU is DOUBLE PRECISION
!>               The root of the equation f(x).
!> \endverbatim
!>
!> \param[out] INFO
!> \verbatim
!>          INFO is INTEGER
!>               = 0: successful exit
!>               > 0: if INFO = 1, failure to converge
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date November 2011
!
!> \ingroup auxOTHERcomputational
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  10/02/03: This version has a few statements commented out for thread
!>  safety (machine parameters are computed on each entry). SJH.
!>
!>  05/10/06: Modified from a new version of Ren-Cang Li, use
!>     Gragg-Thornton-Warner cubic convergent scheme for better stability.
!> \endverbatim
!
!> \par Contributors:
!  ==================
!>
!>     Ren-Cang Li, Computer Science Division, University of California
!>     at Berkeley, USA
!>
!  =====================================================================
      SUBROUTINE DLAED6( KNITER, ORGATI, RHO, D, Z, FINIT, TAU, INFO )
!
!  -- LAPACK computational routine (version 3.4.0) --
!  -- LAPACK is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     November 2011
!
!     .. Scalar Arguments ..
      LOGICAL            ORGATI
      INTEGER            INFO, KNITER
      DOUBLE PRECISION   FINIT, RHO, TAU
!     ..
!     .. Array Arguments ..
      DOUBLE PRECISION   D( 3 ), Z( 3 )
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
      INTEGER            MAXIT
      PARAMETER          ( MAXIT = 40 )
      DOUBLE PRECISION   ZERO, ONE, TWO, THREE, FOUR, EIGHT
      PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0, &
     &                   THREE = 3.0D0, FOUR = 4.0D0, EIGHT = 8.0D0 )
!     ..
!     .. External Functions ..
      DOUBLE PRECISION   DLAMCH
      EXTERNAL           DLAMCH
!     ..
!     .. Local Arrays ..
      DOUBLE PRECISION   DSCALE( 3 ), ZSCALE( 3 )
!     ..
!     .. Local Scalars ..
      LOGICAL            SCALE
      INTEGER            I, ITER, NITER
      DOUBLE PRECISION   A, B, BASE, C, DDF, DF, EPS, ERRETM, ETA, F, &
     &                   FC, SCLFAC, SCLINV, SMALL1, SMALL2, SMINV1, &
     &                   SMINV2, TEMP, TEMP1, TEMP2, TEMP3, TEMP4, &
     &                   LBD, UBD
!     ..
!     .. Intrinsic Functions ..
      INTRINSIC          ABS, INT, LOG, MAX, MIN, SQRT
!     ..
!     .. Executable Statements ..
!
      INFO = 0
!
      IF( ORGATI ) THEN
         LBD = D(2)
         UBD = D(3)
      ELSE
         LBD = D(1)
         UBD = D(2)
      END IF
      IF( FINIT .LT. ZERO )THEN
         LBD = ZERO
      ELSE
         UBD = ZERO
      END IF
!
      NITER = 1
      TAU = ZERO
      IF( KNITER.EQ.2 ) THEN
         IF( ORGATI ) THEN
            TEMP = ( D( 3 )-D( 2 ) ) / TWO
            C = RHO + Z( 1 ) / ( ( D( 1 )-D( 2 ) )-TEMP )
            A = C*( D( 2 )+D( 3 ) ) + Z( 2 ) + Z( 3 )
            B = C*D( 2 )*D( 3 ) + Z( 2 )*D( 3 ) + Z( 3 )*D( 2 )
         ELSE
            TEMP = ( D( 1 )-D( 2 ) ) / TWO
            C = RHO + Z( 3 ) / ( ( D( 3 )-D( 2 ) )-TEMP )
            A = C*( D( 1 )+D( 2 ) ) + Z( 1 ) + Z( 2 )
            B = C*D( 1 )*D( 2 ) + Z( 1 )*D( 2 ) + Z( 2 )*D( 1 )
         END IF
         TEMP = MAX( ABS( A ), ABS( B ), ABS( C ) )
         A = A / TEMP
         B = B / TEMP
         C = C / TEMP
         IF( C.EQ.ZERO ) THEN
            TAU = B / A
         ELSE IF( A.LE.ZERO ) THEN
            TAU = ( A-SQRT( ABS( A*A-FOUR*B*C ) ) ) / ( TWO*C )
         ELSE
            TAU = TWO*B / ( A+SQRT( ABS( A*A-FOUR*B*C ) ) )
         END IF
         IF( TAU .LT. LBD .OR. TAU .GT. UBD ) &
     &      TAU = ( LBD+UBD )/TWO
         IF( D(1).EQ.TAU .OR. D(2).EQ.TAU .OR. D(3).EQ.TAU ) THEN
            TAU = ZERO
         ELSE
            TEMP = FINIT + TAU*Z(1)/( D(1)*( D( 1 )-TAU ) ) + &
     &                     TAU*Z(2)/( D(2)*( D( 2 )-TAU ) ) + &
     &                     TAU*Z(3)/( D(3)*( D( 3 )-TAU ) )
            IF( TEMP .LE. ZERO )THEN
               LBD = TAU
            ELSE
               UBD = TAU
            END IF
            IF( ABS( FINIT ).LE.ABS( TEMP ) ) &
     &         TAU = ZERO
         END IF
      END IF
!
!     get machine parameters for possible scaling to avoid overflow
!
!     modified by Sven: parameters SMALL1, SMINV1, SMALL2,
!     SMINV2, EPS are not SAVEd anymore between one call to the
!     others but recomputed at each call
!
      EPS = DLAMCH( 'Epsilon' )
      BASE = DLAMCH( 'Base' )
      SMALL1 = BASE**( INT( LOG( DLAMCH( 'SafMin' ) ) / LOG( BASE ) / &
     &         THREE ) )
      SMINV1 = ONE / SMALL1
      SMALL2 = SMALL1*SMALL1
      SMINV2 = SMINV1*SMINV1
!
!     Determine if scaling of inputs necessary to avoid overflow
!     when computing 1/TEMP**3
!
      IF( ORGATI ) THEN
         TEMP = MIN( ABS( D( 2 )-TAU ), ABS( D( 3 )-TAU ) )
      ELSE
         TEMP = MIN( ABS( D( 1 )-TAU ), ABS( D( 2 )-TAU ) )
      END IF
      SCALE = .FALSE.
      IF( TEMP.LE.SMALL1 ) THEN
         SCALE = .TRUE.
         IF( TEMP.LE.SMALL2 ) THEN
!
!        Scale up by power of radix nearest 1/SAFMIN**(2/3)
!
            SCLFAC = SMINV2
            SCLINV = SMALL2
         ELSE
!
!        Scale up by power of radix nearest 1/SAFMIN**(1/3)
!
            SCLFAC = SMINV1
            SCLINV = SMALL1
         END IF
!
!        Scaling up safe because D, Z, TAU scaled elsewhere to be O(1)
!
         DO 10 I = 1, 3
            DSCALE( I ) = D( I )*SCLFAC
            ZSCALE( I ) = Z( I )*SCLFAC
   10    CONTINUE
         TAU = TAU*SCLFAC
         LBD = LBD*SCLFAC
         UBD = UBD*SCLFAC
      ELSE
!
!        Copy D and Z to DSCALE and ZSCALE
!
         DO 20 I = 1, 3
            DSCALE( I ) = D( I )
            ZSCALE( I ) = Z( I )
   20    CONTINUE
      END IF
!
      FC = ZERO
      DF = ZERO
      DDF = ZERO
      DO 30 I = 1, 3
         TEMP = ONE / ( DSCALE( I )-TAU )
         TEMP1 = ZSCALE( I )*TEMP
         TEMP2 = TEMP1*TEMP
         TEMP3 = TEMP2*TEMP
         FC = FC + TEMP1 / DSCALE( I )
         DF = DF + TEMP2
         DDF = DDF + TEMP3
   30 CONTINUE
      F = FINIT + TAU*FC
!
      IF( ABS( F ).LE.ZERO ) &
     &   GO TO 60
      IF( F .LE. ZERO )THEN
         LBD = TAU
      ELSE
         UBD = TAU
      END IF
!
!        Iteration begins -- Use Gragg-Thornton-Warner cubic convergent
!                            scheme
!
!     It is not hard to see that
!
!           1) Iterations will go up monotonically
!              if FINIT < 0;
!
!           2) Iterations will go down monotonically
!              if FINIT > 0.
!
      ITER = NITER + 1
!
      DO 50 NITER = ITER, MAXIT
!
         IF( ORGATI ) THEN
            TEMP1 = DSCALE( 2 ) - TAU
            TEMP2 = DSCALE( 3 ) - TAU
         ELSE
            TEMP1 = DSCALE( 1 ) - TAU
            TEMP2 = DSCALE( 2 ) - TAU
         END IF
         A = ( TEMP1+TEMP2 )*F - TEMP1*TEMP2*DF
         B = TEMP1*TEMP2*F
         C = F - ( TEMP1+TEMP2 )*DF + TEMP1*TEMP2*DDF
         TEMP = MAX( ABS( A ), ABS( B ), ABS( C ) )
         A = A / TEMP
         B = B / TEMP
         C = C / TEMP
         IF( C.EQ.ZERO ) THEN
            ETA = B / A
         ELSE IF( A.LE.ZERO ) THEN
            ETA = ( A-SQRT( ABS( A*A-FOUR*B*C ) ) ) / ( TWO*C )
         ELSE
            ETA = TWO*B / ( A+SQRT( ABS( A*A-FOUR*B*C ) ) )
         END IF
         IF( F*ETA.GE.ZERO ) THEN
            ETA = -F / DF
         END IF
!
         TAU = TAU + ETA
         IF( TAU .LT. LBD .OR. TAU .GT. UBD ) &
     &      TAU = ( LBD + UBD )/TWO
!
         FC = ZERO
         ERRETM = ZERO
         DF = ZERO
         DDF = ZERO
         DO 40 I = 1, 3
            TEMP = ONE / ( DSCALE( I )-TAU )
            TEMP1 = ZSCALE( I )*TEMP
            TEMP2 = TEMP1*TEMP
            TEMP3 = TEMP2*TEMP
            TEMP4 = TEMP1 / DSCALE( I )
            FC = FC + TEMP4
            ERRETM = ERRETM + ABS( TEMP4 )
            DF = DF + TEMP2
            DDF = DDF + TEMP3
   40    CONTINUE
         F = FINIT + TAU*FC
         ERRETM = EIGHT*( ABS( FINIT )+ABS( TAU )*ERRETM ) + &
     &            ABS( TAU )*DF
         IF( ABS( F ).LE.EPS*ERRETM ) &
     &      GO TO 60
         IF( F .LE. ZERO )THEN
            LBD = TAU
         ELSE
            UBD = TAU
         END IF
   50 CONTINUE
      INFO = 1
   60 CONTINUE
!
!     Undo scaling
!
      IF( SCALE ) &
     &   TAU = TAU*SCLINV
      RETURN
!
!     End of DLAED6
!
      END