dlaed2.F90 Source File


Source Code

#include "ESMF_LapackBlas.inc"
!> \brief \b DLAED2 used by sstedc. Merges eigenvalues and deflates secular equation. Used when the original matrix is tridiagonal.
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!> \htmlonly
!> Download DLAED2 + dependencies
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaed2.f">
!> [TGZ]</a>
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaed2.f">
!> [ZIP]</a>
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaed2.f">
!> [TXT]</a>
!> \endhtmlonly
!
!  Definition:
!  ===========
!
!       SUBROUTINE DLAED2( K, N, N1, D, Q, LDQ, INDXQ, RHO, Z, DLAMDA, W,
!                          Q2, INDX, INDXC, INDXP, COLTYP, INFO )
!
!       .. Scalar Arguments ..
!       INTEGER            INFO, K, LDQ, N, N1
!       DOUBLE PRECISION   RHO
!       ..
!       .. Array Arguments ..
!       INTEGER            COLTYP( * ), INDX( * ), INDXC( * ), INDXP( * ),
!      $                   INDXQ( * )
!       DOUBLE PRECISION   D( * ), DLAMDA( * ), Q( LDQ, * ), Q2( * ),
!      $                   W( * ), Z( * )
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> DLAED2 merges the two sets of eigenvalues together into a single
!> sorted set.  Then it tries to deflate the size of the problem.
!> There are two ways in which deflation can occur:  when two or more
!> eigenvalues are close together or if there is a tiny entry in the
!> Z vector.  For each such occurrence the order of the related secular
!> equation problem is reduced by one.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[out] K
!> \verbatim
!>          K is INTEGER
!>         The number of non-deflated eigenvalues, and the order of the
!>         related secular equation. 0 <= K <=N.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>         The dimension of the symmetric tridiagonal matrix.  N >= 0.
!> \endverbatim
!>
!> \param[in] N1
!> \verbatim
!>          N1 is INTEGER
!>         The location of the last eigenvalue in the leading sub-matrix.
!>         min(1,N) <= N1 <= N/2.
!> \endverbatim
!>
!> \param[in,out] D
!> \verbatim
!>          D is DOUBLE PRECISION array, dimension (N)
!>         On entry, D contains the eigenvalues of the two submatrices to
!>         be combined.
!>         On exit, D contains the trailing (N-K) updated eigenvalues
!>         (those which were deflated) sorted into increasing order.
!> \endverbatim
!>
!> \param[in,out] Q
!> \verbatim
!>          Q is DOUBLE PRECISION array, dimension (LDQ, N)
!>         On entry, Q contains the eigenvectors of two submatrices in
!>         the two square blocks with corners at (1,1), (N1,N1)
!>         and (N1+1, N1+1), (N,N).
!>         On exit, Q contains the trailing (N-K) updated eigenvectors
!>         (those which were deflated) in its last N-K columns.
!> \endverbatim
!>
!> \param[in] LDQ
!> \verbatim
!>          LDQ is INTEGER
!>         The leading dimension of the array Q.  LDQ >= max(1,N).
!> \endverbatim
!>
!> \param[in,out] INDXQ
!> \verbatim
!>          INDXQ is INTEGER array, dimension (N)
!>         The permutation which separately sorts the two sub-problems
!>         in D into ascending order.  Note that elements in the second
!>         half of this permutation must first have N1 added to their
!>         values. Destroyed on exit.
!> \endverbatim
!>
!> \param[in,out] RHO
!> \verbatim
!>          RHO is DOUBLE PRECISION
!>         On entry, the off-diagonal element associated with the rank-1
!>         cut which originally split the two submatrices which are now
!>         being recombined.
!>         On exit, RHO has been modified to the value required by
!>         DLAED3.
!> \endverbatim
!>
!> \param[in] Z
!> \verbatim
!>          Z is DOUBLE PRECISION array, dimension (N)
!>         On entry, Z contains the updating vector (the last
!>         row of the first sub-eigenvector matrix and the first row of
!>         the second sub-eigenvector matrix).
!>         On exit, the contents of Z have been destroyed by the updating
!>         process.
!> \endverbatim
!>
!> \param[out] DLAMDA
!> \verbatim
!>          DLAMDA is DOUBLE PRECISION array, dimension (N)
!>         A copy of the first K eigenvalues which will be used by
!>         DLAED3 to form the secular equation.
!> \endverbatim
!>
!> \param[out] W
!> \verbatim
!>          W is DOUBLE PRECISION array, dimension (N)
!>         The first k values of the final deflation-altered z-vector
!>         which will be passed to DLAED3.
!> \endverbatim
!>
!> \param[out] Q2
!> \verbatim
!>          Q2 is DOUBLE PRECISION array, dimension (N1**2+(N-N1)**2)
!>         A copy of the first K eigenvectors which will be used by
!>         DLAED3 in a matrix multiply (DGEMM) to solve for the new
!>         eigenvectors.
!> \endverbatim
!>
!> \param[out] INDX
!> \verbatim
!>          INDX is INTEGER array, dimension (N)
!>         The permutation used to sort the contents of DLAMDA into
!>         ascending order.
!> \endverbatim
!>
!> \param[out] INDXC
!> \verbatim
!>          INDXC is INTEGER array, dimension (N)
!>         The permutation used to arrange the columns of the deflated
!>         Q matrix into three groups:  the first group contains non-zero
!>         elements only at and above N1, the second contains
!>         non-zero elements only below N1, and the third is dense.
!> \endverbatim
!>
!> \param[out] INDXP
!> \verbatim
!>          INDXP is INTEGER array, dimension (N)
!>         The permutation used to place deflated values of D at the end
!>         of the array.  INDXP(1:K) points to the nondeflated D-values
!>         and INDXP(K+1:N) points to the deflated eigenvalues.
!> \endverbatim
!>
!> \param[out] COLTYP
!> \verbatim
!>          COLTYP is INTEGER array, dimension (N)
!>         During execution, a label which will indicate which of the
!>         following types a column in the Q2 matrix is:
!>         1 : non-zero in the upper half only;
!>         2 : dense;
!>         3 : non-zero in the lower half only;
!>         4 : deflated.
!>         On exit, COLTYP(i) is the number of columns of type i,
!>         for i=1 to 4 only.
!> \endverbatim
!>
!> \param[out] INFO
!> \verbatim
!>          INFO is INTEGER
!>          = 0:  successful exit.
!>          < 0:  if INFO = -i, the i-th argument had an illegal value.
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup auxOTHERcomputational
!
!> \par Contributors:
!  ==================
!>
!> Jeff Rutter, Computer Science Division, University of California
!> at Berkeley, USA \n
!>  Modified by Francoise Tisseur, University of Tennessee
!>
!  =====================================================================
      SUBROUTINE DLAED2( K, N, N1, D, Q, LDQ, INDXQ, RHO, Z, DLAMDA, W, &
                         Q2, INDX, INDXC, INDXP, COLTYP, INFO )
!
!  -- LAPACK computational routine (version 3.7.0) --
!  -- LAPACK is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
      INTEGER            INFO, K, LDQ, N, N1
      DOUBLE PRECISION   RHO
!     ..
!     .. Array Arguments ..
      INTEGER            COLTYP( * ), INDX( * ), INDXC( * ), INDXP( * ), &
                         INDXQ( * )
      DOUBLE PRECISION   D( * ), DLAMDA( * ), Q( LDQ, * ), Q2( * ), &
                         W( * ), Z( * )
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
      DOUBLE PRECISION   MONE, ZERO, ONE, TWO, EIGHT
      PARAMETER          ( MONE = -1.0D0, ZERO = 0.0D0, ONE = 1.0D0, &
                         TWO = 2.0D0, EIGHT = 8.0D0 )
!     ..
!     .. Local Arrays ..
      INTEGER            CTOT( 4 ), PSM( 4 )
!     ..
!     .. Local Scalars ..
      INTEGER            CT, I, IMAX, IQ1, IQ2, J, JMAX, JS, K2, N1P1, &
                         N2, NJ, PJ
      DOUBLE PRECISION   C, EPS, S, T, TAU, TOL
!     ..
!     .. External Functions ..
      INTEGER            IDAMAX
      DOUBLE PRECISION   DLAMCH, DLAPY2
      EXTERNAL           IDAMAX, DLAMCH, DLAPY2
!     ..
!     .. External Subroutines ..
      EXTERNAL           DCOPY, DLACPY, DLAMRG, DROT, DSCAL, XERBLA
!     ..
!     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX, MIN, SQRT
!     ..
!     .. Executable Statements ..
!
!     Test the input parameters.
!
      INFO = 0
!
      IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN
         INFO = -6
      ELSE IF( MIN( 1, ( N / 2 ) ).GT.N1 .OR. ( N / 2 ).LT.N1 ) THEN
         INFO = -3
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DLAED2', -INFO )
         RETURN
      END IF
!
!     Quick return if possible
!
      IF( N.EQ.0 ) &
         RETURN
!
      N2 = N - N1
      N1P1 = N1 + 1
!
      IF( RHO.LT.ZERO ) THEN
         CALL DSCAL( N2, MONE, Z( N1P1 ), 1 )
      END IF
!
!     Normalize z so that norm(z) = 1.  Since z is the concatenation of
!     two normalized vectors, norm2(z) = sqrt(2).
!
      T = ONE / SQRT( TWO )
      CALL DSCAL( N, T, Z, 1 )
!
!     RHO = ABS( norm(z)**2 * RHO )
!
      RHO = ABS( TWO*RHO )
!
!     Sort the eigenvalues into increasing order
!
      DO 10 I = N1P1, N
         INDXQ( I ) = INDXQ( I ) + N1
   10 CONTINUE
!
!     re-integrate the deflated parts from the last pass
!
      DO 20 I = 1, N
         DLAMDA( I ) = D( INDXQ( I ) )
   20 CONTINUE
      CALL DLAMRG( N1, N2, DLAMDA, 1, 1, INDXC )
      DO 30 I = 1, N
         INDX( I ) = INDXQ( INDXC( I ) )
   30 CONTINUE
!
!     Calculate the allowable deflation tolerance
!
      IMAX = IDAMAX( N, Z, 1 )
      JMAX = IDAMAX( N, D, 1 )
      EPS = DLAMCH( 'Epsilon' )
      TOL = EIGHT*EPS*MAX( ABS( D( JMAX ) ), ABS( Z( IMAX ) ) )
!
!     If the rank-1 modifier is small enough, no more needs to be done
!     except to reorganize Q so that its columns correspond with the
!     elements in D.
!
      IF( RHO*ABS( Z( IMAX ) ).LE.TOL ) THEN
         K = 0
         IQ2 = 1
         DO 40 J = 1, N
            I = INDX( J )
            CALL DCOPY( N, Q( 1, I ), 1, Q2( IQ2 ), 1 )
            DLAMDA( J ) = D( I )
            IQ2 = IQ2 + N
   40    CONTINUE
         CALL DLACPY( 'A', N, N, Q2, N, Q, LDQ )
         CALL DCOPY( N, DLAMDA, 1, D, 1 )
         GO TO 190
      END IF
!
!     If there are multiple eigenvalues then the problem deflates.  Here
!     the number of equal eigenvalues are found.  As each equal
!     eigenvalue is found, an elementary reflector is computed to rotate
!     the corresponding eigensubspace so that the corresponding
!     components of Z are zero in this new basis.
!
      DO 50 I = 1, N1
         COLTYP( I ) = 1
   50 CONTINUE
      DO 60 I = N1P1, N
         COLTYP( I ) = 3
   60 CONTINUE
!
!
      K = 0
      K2 = N + 1
      DO 70 J = 1, N
         NJ = INDX( J )
         IF( RHO*ABS( Z( NJ ) ).LE.TOL ) THEN
!
!           Deflate due to small z component.
!
            K2 = K2 - 1
            COLTYP( NJ ) = 4
            INDXP( K2 ) = NJ
            IF( J.EQ.N ) &
               GO TO 100
         ELSE
            PJ = NJ
            GO TO 80
         END IF
   70 CONTINUE
   80 CONTINUE
      J = J + 1
      NJ = INDX( J )
      IF( J.GT.N ) &
         GO TO 100
      IF( RHO*ABS( Z( NJ ) ).LE.TOL ) THEN
!
!        Deflate due to small z component.
!
         K2 = K2 - 1
         COLTYP( NJ ) = 4
         INDXP( K2 ) = NJ
      ELSE
!
!        Check if eigenvalues are close enough to allow deflation.
!
         S = Z( PJ )
         C = Z( NJ )
!
!        Find sqrt(a**2+b**2) without overflow or
!        destructive underflow.
!
         TAU = DLAPY2( C, S )
         T = D( NJ ) - D( PJ )
         C = C / TAU
         S = -S / TAU
         IF( ABS( T*C*S ).LE.TOL ) THEN
!
!           Deflation is possible.
!
            Z( NJ ) = TAU
            Z( PJ ) = ZERO
            IF( COLTYP( NJ ).NE.COLTYP( PJ ) ) &
               COLTYP( NJ ) = 2
            COLTYP( PJ ) = 4
            CALL DROT( N, Q( 1, PJ ), 1, Q( 1, NJ ), 1, C, S )
            T = D( PJ )*C**2 + D( NJ )*S**2
            D( NJ ) = D( PJ )*S**2 + D( NJ )*C**2
            D( PJ ) = T
            K2 = K2 - 1
            I = 1
   90       CONTINUE
            IF( K2+I.LE.N ) THEN
               IF( D( PJ ).LT.D( INDXP( K2+I ) ) ) THEN
                  INDXP( K2+I-1 ) = INDXP( K2+I )
                  INDXP( K2+I ) = PJ
                  I = I + 1
                  GO TO 90
               ELSE
                  INDXP( K2+I-1 ) = PJ
               END IF
            ELSE
               INDXP( K2+I-1 ) = PJ
            END IF
            PJ = NJ
         ELSE
            K = K + 1
            DLAMDA( K ) = D( PJ )
            W( K ) = Z( PJ )
            INDXP( K ) = PJ
            PJ = NJ
         END IF
      END IF
      GO TO 80
  100 CONTINUE
!
!     Record the last eigenvalue.
!
      K = K + 1
      DLAMDA( K ) = D( PJ )
      W( K ) = Z( PJ )
      INDXP( K ) = PJ
!
!     Count up the total number of the various types of columns, then
!     form a permutation which positions the four column types into
!     four uniform groups (although one or more of these groups may be
!     empty).
!
      DO 110 J = 1, 4
         CTOT( J ) = 0
  110 CONTINUE
      DO 120 J = 1, N
         CT = COLTYP( J )
         CTOT( CT ) = CTOT( CT ) + 1
  120 CONTINUE
!
!     PSM(*) = Position in SubMatrix (of types 1 through 4)
!
      PSM( 1 ) = 1
      PSM( 2 ) = 1 + CTOT( 1 )
      PSM( 3 ) = PSM( 2 ) + CTOT( 2 )
      PSM( 4 ) = PSM( 3 ) + CTOT( 3 )
      K = N - CTOT( 4 )
!
!     Fill out the INDXC array so that the permutation which it induces
!     will place all type-1 columns first, all type-2 columns next,
!     then all type-3's, and finally all type-4's.
!
      DO 130 J = 1, N
         JS = INDXP( J )
         CT = COLTYP( JS )
         INDX( PSM( CT ) ) = JS
         INDXC( PSM( CT ) ) = J
         PSM( CT ) = PSM( CT ) + 1
  130 CONTINUE
!
!     Sort the eigenvalues and corresponding eigenvectors into DLAMDA
!     and Q2 respectively.  The eigenvalues/vectors which were not
!     deflated go into the first K slots of DLAMDA and Q2 respectively,
!     while those which were deflated go into the last N - K slots.
!
      I = 1
      IQ1 = 1
      IQ2 = 1 + ( CTOT( 1 )+CTOT( 2 ) )*N1
      DO 140 J = 1, CTOT( 1 )
         JS = INDX( I )
         CALL DCOPY( N1, Q( 1, JS ), 1, Q2( IQ1 ), 1 )
         Z( I ) = D( JS )
         I = I + 1
         IQ1 = IQ1 + N1
  140 CONTINUE
!
      DO 150 J = 1, CTOT( 2 )
         JS = INDX( I )
         CALL DCOPY( N1, Q( 1, JS ), 1, Q2( IQ1 ), 1 )
         CALL DCOPY( N2, Q( N1+1, JS ), 1, Q2( IQ2 ), 1 )
         Z( I ) = D( JS )
         I = I + 1
         IQ1 = IQ1 + N1
         IQ2 = IQ2 + N2
  150 CONTINUE
!
      DO 160 J = 1, CTOT( 3 )
         JS = INDX( I )
         CALL DCOPY( N2, Q( N1+1, JS ), 1, Q2( IQ2 ), 1 )
         Z( I ) = D( JS )
         I = I + 1
         IQ2 = IQ2 + N2
  160 CONTINUE
!
      IQ1 = IQ2
      DO 170 J = 1, CTOT( 4 )
         JS = INDX( I )
         CALL DCOPY( N, Q( 1, JS ), 1, Q2( IQ2 ), 1 )
         IQ2 = IQ2 + N
         Z( I ) = D( JS )
         I = I + 1
  170 CONTINUE
!
!     The deflated eigenvalues and their corresponding vectors go back
!     into the last N - K slots of D and Q respectively.
!
      IF( K.LT.N ) THEN
         CALL DLACPY( 'A', N, CTOT( 4 ), Q2( IQ1 ), N, &
                      Q( 1, K+1 ), LDQ )
         CALL DCOPY( N-K, Z( K+1 ), 1, D( K+1 ), 1 )
      END IF
!
!     Copy CTOT into COLTYP for referencing in DLAED3.
!
      DO 180 J = 1, 4
         COLTYP( J ) = CTOT( J )
  180 CONTINUE
!
  190 CONTINUE
      RETURN
!
!     End of DLAED2
!
      END