dhseqr.F90 Source File


Source Code

#include "ESMF_LapackBlas.inc"
!> \brief \b DHSEQR
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!> \htmlonly
!> Download DHSEQR + dependencies
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dhseqr.f">
!> [TGZ]</a>
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dhseqr.f">
!> [ZIP]</a>
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dhseqr.f">
!> [TXT]</a>
!> \endhtmlonly
!
!  Definition:
!  ===========
!
!       SUBROUTINE DHSEQR( JOB, COMPZ, N, ILO, IHI, H, LDH, WR, WI, Z,
!                          LDZ, WORK, LWORK, INFO )
!
!       .. Scalar Arguments ..
!       INTEGER            IHI, ILO, INFO, LDH, LDZ, LWORK, N
!       CHARACTER          COMPZ, JOB
!       ..
!       .. Array Arguments ..
!       DOUBLE PRECISION   H( LDH, * ), WI( * ), WORK( * ), WR( * ),
!      $                   Z( LDZ, * )
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!>    DHSEQR computes the eigenvalues of a Hessenberg matrix H
!>    and, optionally, the matrices T and Z from the Schur decomposition
!>    H = Z T Z**T, where T is an upper quasi-triangular matrix (the
!>    Schur form), and Z is the orthogonal matrix of Schur vectors.
!>
!>    Optionally Z may be postmultiplied into an input orthogonal
!>    matrix Q so that this routine can give the Schur factorization
!>    of a matrix A which has been reduced to the Hessenberg form H
!>    by the orthogonal matrix Q:  A = Q*H*Q**T = (QZ)*T*(QZ)**T.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] JOB
!> \verbatim
!>          JOB is CHARACTER*1
!>           = 'E':  compute eigenvalues only;
!>           = 'S':  compute eigenvalues and the Schur form T.
!> \endverbatim
!>
!> \param[in] COMPZ
!> \verbatim
!>          COMPZ is CHARACTER*1
!>           = 'N':  no Schur vectors are computed;
!>           = 'I':  Z is initialized to the unit matrix and the matrix Z
!>                   of Schur vectors of H is returned;
!>           = 'V':  Z must contain an orthogonal matrix Q on entry, and
!>                   the product Q*Z is returned.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>           The order of the matrix H.  N .GE. 0.
!> \endverbatim
!>
!> \param[in] ILO
!> \verbatim
!>          ILO is INTEGER
!> \endverbatim
!>
!> \param[in] IHI
!> \verbatim
!>          IHI is INTEGER
!>
!>           It is assumed that H is already upper triangular in rows
!>           and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally
!>           set by a previous call to DGEBAL, and then passed to ZGEHRD
!>           when the matrix output by DGEBAL is reduced to Hessenberg
!>           form. Otherwise ILO and IHI should be set to 1 and N
!>           respectively.  If N.GT.0, then 1.LE.ILO.LE.IHI.LE.N.
!>           If N = 0, then ILO = 1 and IHI = 0.
!> \endverbatim
!>
!> \param[in,out] H
!> \verbatim
!>          H is DOUBLE PRECISION array, dimension (LDH,N)
!>           On entry, the upper Hessenberg matrix H.
!>           On exit, if INFO = 0 and JOB = 'S', then H contains the
!>           upper quasi-triangular matrix T from the Schur decomposition
!>           (the Schur form); 2-by-2 diagonal blocks (corresponding to
!>           complex conjugate pairs of eigenvalues) are returned in
!>           standard form, with H(i,i) = H(i+1,i+1) and
!>           H(i+1,i)*H(i,i+1).LT.0. If INFO = 0 and JOB = 'E', the
!>           contents of H are unspecified on exit.  (The output value of
!>           H when INFO.GT.0 is given under the description of INFO
!>           below.)
!>
!>           Unlike earlier versions of DHSEQR, this subroutine may
!>           explicitly H(i,j) = 0 for i.GT.j and j = 1, 2, ... ILO-1
!>           or j = IHI+1, IHI+2, ... N.
!> \endverbatim
!>
!> \param[in] LDH
!> \verbatim
!>          LDH is INTEGER
!>           The leading dimension of the array H. LDH .GE. max(1,N).
!> \endverbatim
!>
!> \param[out] WR
!> \verbatim
!>          WR is DOUBLE PRECISION array, dimension (N)
!> \endverbatim
!>
!> \param[out] WI
!> \verbatim
!>          WI is DOUBLE PRECISION array, dimension (N)
!>
!>           The real and imaginary parts, respectively, of the computed
!>           eigenvalues. If two eigenvalues are computed as a complex
!>           conjugate pair, they are stored in consecutive elements of
!>           WR and WI, say the i-th and (i+1)th, with WI(i) .GT. 0 and
!>           WI(i+1) .LT. 0. If JOB = 'S', the eigenvalues are stored in
!>           the same order as on the diagonal of the Schur form returned
!>           in H, with WR(i) = H(i,i) and, if H(i:i+1,i:i+1) is a 2-by-2
!>           diagonal block, WI(i) = sqrt(-H(i+1,i)*H(i,i+1)) and
!>           WI(i+1) = -WI(i).
!> \endverbatim
!>
!> \param[in,out] Z
!> \verbatim
!>          Z is DOUBLE PRECISION array, dimension (LDZ,N)
!>           If COMPZ = 'N', Z is not referenced.
!>           If COMPZ = 'I', on entry Z need not be set and on exit,
!>           if INFO = 0, Z contains the orthogonal matrix Z of the Schur
!>           vectors of H.  If COMPZ = 'V', on entry Z must contain an
!>           N-by-N matrix Q, which is assumed to be equal to the unit
!>           matrix except for the submatrix Z(ILO:IHI,ILO:IHI). On exit,
!>           if INFO = 0, Z contains Q*Z.
!>           Normally Q is the orthogonal matrix generated by DORGHR
!>           after the call to DGEHRD which formed the Hessenberg matrix
!>           H. (The output value of Z when INFO.GT.0 is given under
!>           the description of INFO below.)
!> \endverbatim
!>
!> \param[in] LDZ
!> \verbatim
!>          LDZ is INTEGER
!>           The leading dimension of the array Z.  if COMPZ = 'I' or
!>           COMPZ = 'V', then LDZ.GE.MAX(1,N).  Otherwize, LDZ.GE.1.
!> \endverbatim
!>
!> \param[out] WORK
!> \verbatim
!>          WORK is DOUBLE PRECISION array, dimension (LWORK)
!>           On exit, if INFO = 0, WORK(1) returns an estimate of
!>           the optimal value for LWORK.
!> \endverbatim
!>
!> \param[in] LWORK
!> \verbatim
!>          LWORK is INTEGER
!>           The dimension of the array WORK.  LWORK .GE. max(1,N)
!>           is sufficient and delivers very good and sometimes
!>           optimal performance.  However, LWORK as large as 11*N
!>           may be required for optimal performance.  A workspace
!>           query is recommended to determine the optimal workspace
!>           size.
!>
!>           If LWORK = -1, then DHSEQR does a workspace query.
!>           In this case, DHSEQR checks the input parameters and
!>           estimates the optimal workspace size for the given
!>           values of N, ILO and IHI.  The estimate is returned
!>           in WORK(1).  No error message related to LWORK is
!>           issued by XERBLA.  Neither H nor Z are accessed.
!> \endverbatim
!>
!> \param[out] INFO
!> \verbatim
!>          INFO is INTEGER
!>             =  0:  successful exit
!>           .LT. 0:  if INFO = -i, the i-th argument had an illegal
!>                    value
!>           .GT. 0:  if INFO = i, DHSEQR failed to compute all of
!>                the eigenvalues.  Elements 1:ilo-1 and i+1:n of WR
!>                and WI contain those eigenvalues which have been
!>                successfully computed.  (Failures are rare.)
!>
!>                If INFO .GT. 0 and JOB = 'E', then on exit, the
!>                remaining unconverged eigenvalues are the eigen-
!>                values of the upper Hessenberg matrix rows and
!>                columns ILO through INFO of the final, output
!>                value of H.
!>
!>                If INFO .GT. 0 and JOB   = 'S', then on exit
!>
!>           (*)  (initial value of H)*U  = U*(final value of H)
!>
!>                where U is an orthogonal matrix.  The final
!>                value of H is upper Hessenberg and quasi-triangular
!>                in rows and columns INFO+1 through IHI.
!>
!>                If INFO .GT. 0 and COMPZ = 'V', then on exit
!>
!>                  (final value of Z)  =  (initial value of Z)*U
!>
!>                where U is the orthogonal matrix in (*) (regard-
!>                less of the value of JOB.)
!>
!>                If INFO .GT. 0 and COMPZ = 'I', then on exit
!>                      (final value of Z)  = U
!>                where U is the orthogonal matrix in (*) (regard-
!>                less of the value of JOB.)
!>
!>                If INFO .GT. 0 and COMPZ = 'N', then Z is not
!>                accessed.
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup doubleOTHERcomputational
!
!> \par Contributors:
!  ==================
!>
!>       Karen Braman and Ralph Byers, Department of Mathematics,
!>       University of Kansas, USA
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>             Default values supplied by
!>             ILAENV(ISPEC,'DHSEQR',JOB(:1)//COMPZ(:1),N,ILO,IHI,LWORK).
!>             It is suggested that these defaults be adjusted in order
!>             to attain best performance in each particular
!>             computational environment.
!>
!>            ISPEC=12: The DLAHQR vs DLAQR0 crossover point.
!>                      Default: 75. (Must be at least 11.)
!>
!>            ISPEC=13: Recommended deflation window size.
!>                      This depends on ILO, IHI and NS.  NS is the
!>                      number of simultaneous shifts returned
!>                      by ILAENV(ISPEC=15).  (See ISPEC=15 below.)
!>                      The default for (IHI-ILO+1).LE.500 is NS.
!>                      The default for (IHI-ILO+1).GT.500 is 3*NS/2.
!>
!>            ISPEC=14: Nibble crossover point. (See IPARMQ for
!>                      details.)  Default: 14% of deflation window
!>                      size.
!>
!>            ISPEC=15: Number of simultaneous shifts in a multishift
!>                      QR iteration.
!>
!>                      If IHI-ILO+1 is ...
!>
!>                      greater than      ...but less    ... the
!>                      or equal to ...      than        default is
!>
!>                           1               30          NS =   2(+)
!>                          30               60          NS =   4(+)
!>                          60              150          NS =  10(+)
!>                         150              590          NS =  **
!>                         590             3000          NS =  64
!>                        3000             6000          NS = 128
!>                        6000             infinity      NS = 256
!>
!>                  (+)  By default some or all matrices of this order
!>                       are passed to the implicit double shift routine
!>                       DLAHQR and this parameter is ignored.  See
!>                       ISPEC=12 above and comments in IPARMQ for
!>                       details.
!>
!>                 (**)  The asterisks (**) indicate an ad-hoc
!>                       function of N increasing from 10 to 64.
!>
!>            ISPEC=16: Select structured matrix multiply.
!>                      If the number of simultaneous shifts (specified
!>                      by ISPEC=15) is less than 14, then the default
!>                      for ISPEC=16 is 0.  Otherwise the default for
!>                      ISPEC=16 is 2.
!> \endverbatim
!
!> \par References:
!  ================
!>
!>       K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
!>       Algorithm Part I: Maintaining Well Focused Shifts, and Level 3
!>       Performance, SIAM Journal of Matrix Analysis, volume 23, pages
!>       929--947, 2002.
!> \n
!>       K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
!>       Algorithm Part II: Aggressive Early Deflation, SIAM Journal
!>       of Matrix Analysis, volume 23, pages 948--973, 2002.
!
!  =====================================================================
      SUBROUTINE DHSEQR( JOB, COMPZ, N, ILO, IHI, H, LDH, WR, WI, Z, &
                         LDZ, WORK, LWORK, INFO )
!
!  -- LAPACK computational routine (version 3.7.0) --
!  -- LAPACK is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
      INTEGER            IHI, ILO, INFO, LDH, LDZ, LWORK, N
      CHARACTER          COMPZ, JOB
!     ..
!     .. Array Arguments ..
      DOUBLE PRECISION   H( LDH, * ), WI( * ), WORK( * ), WR( * ), &
                         Z( LDZ, * )
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
!
!     ==== Matrices of order NTINY or smaller must be processed by
!     .    DLAHQR because of insufficient subdiagonal scratch space.
!     .    (This is a hard limit.) ====
      INTEGER            NTINY
      PARAMETER          ( NTINY = 11 )
!
!     ==== NL allocates some local workspace to help small matrices
!     .    through a rare DLAHQR failure.  NL .GT. NTINY = 11 is
!     .    required and NL .LE. NMIN = ILAENV(ISPEC=12,...) is recom-
!     .    mended.  (The default value of NMIN is 75.)  Using NL = 49
!     .    allows up to six simultaneous shifts and a 16-by-16
!     .    deflation window.  ====
      INTEGER            NL
      PARAMETER          ( NL = 49 )
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0d0, ONE = 1.0d0 )
!     ..
!     .. Local Arrays ..
      DOUBLE PRECISION   HL( NL, NL ), WORKL( NL )
!     ..
!     .. Local Scalars ..
      INTEGER            I, KBOT, NMIN
      LOGICAL            INITZ, LQUERY, WANTT, WANTZ
!     ..
!     .. External Functions ..
      INTEGER            ILAENV
      LOGICAL            LSAME
      EXTERNAL           ILAENV, LSAME
!     ..
!     .. External Subroutines ..
      EXTERNAL           DLACPY, DLAHQR, DLAQR0, DLASET, XERBLA
!     ..
!     .. Intrinsic Functions ..
      INTRINSIC          DBLE, MAX, MIN
!     ..
!     .. Executable Statements ..
!
!     ==== Decode and check the input parameters. ====
!
      WANTT = LSAME( JOB, 'S' )
      INITZ = LSAME( COMPZ, 'I' )
      WANTZ = INITZ .OR. LSAME( COMPZ, 'V' )
      WORK( 1 ) = DBLE( MAX( 1, N ) )
      LQUERY = LWORK.EQ.-1
!
      INFO = 0
      IF( .NOT.LSAME( JOB, 'E' ) .AND. .NOT.WANTT ) THEN
         INFO = -1
      ELSE IF( .NOT.LSAME( COMPZ, 'N' ) .AND. .NOT.WANTZ ) THEN
         INFO = -2
      ELSE IF( N.LT.0 ) THEN
         INFO = -3
      ELSE IF( ILO.LT.1 .OR. ILO.GT.MAX( 1, N ) ) THEN
         INFO = -4
      ELSE IF( IHI.LT.MIN( ILO, N ) .OR. IHI.GT.N ) THEN
         INFO = -5
      ELSE IF( LDH.LT.MAX( 1, N ) ) THEN
         INFO = -7
      ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.MAX( 1, N ) ) ) THEN
         INFO = -11
      ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN
         INFO = -13
      END IF
!
      IF( INFO.NE.0 ) THEN
!
!        ==== Quick return in case of invalid argument. ====
!
         CALL XERBLA( 'DHSEQR', -INFO )
         RETURN
!
      ELSE IF( N.EQ.0 ) THEN
!
!        ==== Quick return in case N = 0; nothing to do. ====
!
         RETURN
!
      ELSE IF( LQUERY ) THEN
!
!        ==== Quick return in case of a workspace query ====
!
         CALL DLAQR0( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI, ILO, &
                      IHI, Z, LDZ, WORK, LWORK, INFO )
!        ==== Ensure reported workspace size is backward-compatible with
!        .    previous LAPACK versions. ====
         WORK( 1 ) = MAX( DBLE( MAX( 1, N ) ), WORK( 1 ) )
         RETURN
!
      ELSE
!
!        ==== copy eigenvalues isolated by DGEBAL ====
!
         DO 10 I = 1, ILO - 1
            WR( I ) = H( I, I )
            WI( I ) = ZERO
   10    CONTINUE
         DO 20 I = IHI + 1, N
            WR( I ) = H( I, I )
            WI( I ) = ZERO
   20    CONTINUE
!
!        ==== Initialize Z, if requested ====
!
         IF( INITZ ) &
            CALL DLASET( 'A', N, N, ZERO, ONE, Z, LDZ )
!
!        ==== Quick return if possible ====
!
         IF( ILO.EQ.IHI ) THEN
            WR( ILO ) = H( ILO, ILO )
            WI( ILO ) = ZERO
            RETURN
         END IF
!
!        ==== DLAHQR/DLAQR0 crossover point ====
!
         NMIN = ILAENV( 12, 'DHSEQR', JOB( : 1 ) // COMPZ( : 1 ), N, &
                ILO, IHI, LWORK )
         NMIN = MAX( NTINY, NMIN )
!
!        ==== DLAQR0 for big matrices; DLAHQR for small ones ====
!
         IF( N.GT.NMIN ) THEN
            CALL DLAQR0( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI, ILO, &
                         IHI, Z, LDZ, WORK, LWORK, INFO )
         ELSE
!
!           ==== Small matrix ====
!
            CALL DLAHQR( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI, ILO, &
                         IHI, Z, LDZ, INFO )
!
            IF( INFO.GT.0 ) THEN
!
!              ==== A rare DLAHQR failure!  DLAQR0 sometimes succeeds
!              .    when DLAHQR fails. ====
!
               KBOT = INFO
!
               IF( N.GE.NL ) THEN
!
!                 ==== Larger matrices have enough subdiagonal scratch
!                 .    space to call DLAQR0 directly. ====
!
                  CALL DLAQR0( WANTT, WANTZ, N, ILO, KBOT, H, LDH, WR, &
                               WI, ILO, IHI, Z, LDZ, WORK, LWORK, INFO )
!
               ELSE
!
!                 ==== Tiny matrices don't have enough subdiagonal
!                 .    scratch space to benefit from DLAQR0.  Hence,
!                 .    tiny matrices must be copied into a larger
!                 .    array before calling DLAQR0. ====
!
                  CALL DLACPY( 'A', N, N, H, LDH, HL, NL )
                  HL( N+1, N ) = ZERO
                  CALL DLASET( 'A', NL, NL-N, ZERO, ZERO, HL( 1, N+1 ), &
                               NL )
                  CALL DLAQR0( WANTT, WANTZ, NL, ILO, KBOT, HL, NL, WR, &
                               WI, ILO, IHI, Z, LDZ, WORKL, NL, INFO )
                  IF( WANTT .OR. INFO.NE.0 ) &
                     CALL DLACPY( 'A', N, N, HL, NL, H, LDH )
               END IF
            END IF
         END IF
!
!        ==== Clear out the trash, if necessary. ====
!
         IF( ( WANTT .OR. INFO.NE.0 ) .AND. N.GT.2 ) &
            CALL DLASET( 'L', N-2, N-2, ZERO, ZERO, H( 3, 1 ), LDH )
!
!        ==== Ensure reported workspace size is backward-compatible with
!        .    previous LAPACK versions. ====
!
         WORK( 1 ) = MAX( DBLE( MAX( 1, N ) ), WORK( 1 ) )
      END IF
!
!     ==== End of DHSEQR ====
!
      END