dgetrf.F90 Source File


Source Code

#include "ESMF_LapackBlas.inc"
!> \brief \b DGETRF
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!> \htmlonly
!> Download DGETRF + dependencies
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgetrf.f">
!> [TGZ]</a>
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgetrf.f">
!> [ZIP]</a>
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgetrf.f">
!> [TXT]</a>
!> \endhtmlonly
!
!  Definition:
!  ===========
!
!       SUBROUTINE DGETRF( M, N, A, LDA, IPIV, INFO )
!
!       .. Scalar Arguments ..
!       INTEGER            INFO, LDA, M, N
!       ..
!       .. Array Arguments ..
!       INTEGER            IPIV( * )
!       DOUBLE PRECISION   A( LDA, * )
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> DGETRF computes an LU factorization of a general M-by-N matrix A
!> using partial pivoting with row interchanges.
!>
!> The factorization has the form
!>    A = P * L * U
!> where P is a permutation matrix, L is lower triangular with unit
!> diagonal elements (lower trapezoidal if m > n), and U is upper
!> triangular (upper trapezoidal if m < n).
!>
!> This is the right-looking Level 3 BLAS version of the algorithm.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] M
!> \verbatim
!>          M is INTEGER
!>          The number of rows of the matrix A.  M >= 0.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>          The number of columns of the matrix A.  N >= 0.
!> \endverbatim
!>
!> \param[in,out] A
!> \verbatim
!>          A is DOUBLE PRECISION array, dimension (LDA,N)
!>          On entry, the M-by-N matrix to be factored.
!>          On exit, the factors L and U from the factorization
!>          A = P*L*U; the unit diagonal elements of L are not stored.
!> \endverbatim
!>
!> \param[in] LDA
!> \verbatim
!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,M).
!> \endverbatim
!>
!> \param[out] IPIV
!> \verbatim
!>          IPIV is INTEGER array, dimension (min(M,N))
!>          The pivot indices; for 1 <= i <= min(M,N), row i of the
!>          matrix was interchanged with row IPIV(i).
!> \endverbatim
!>
!> \param[out] INFO
!> \verbatim
!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!>          > 0:  if INFO = i, U(i,i) is exactly zero. The factorization
!>                has been completed, but the factor U is exactly
!>                singular, and division by zero will occur if it is used
!>                to solve a system of equations.
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date December 2016
!
!> \ingroup doubleGEcomputational
!
!  =====================================================================
      SUBROUTINE DGETRF( M, N, A, LDA, IPIV, INFO )
!
!  -- LAPACK computational routine (version 3.7.0) --
!  -- LAPACK is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     December 2016
!
!     .. Scalar Arguments ..
      INTEGER            INFO, LDA, M, N
!     ..
!     .. Array Arguments ..
      INTEGER            IPIV( * )
      DOUBLE PRECISION   A( LDA, * )
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
      DOUBLE PRECISION   ONE
      PARAMETER          ( ONE = 1.0D+0 )
!     ..
!     .. Local Scalars ..
      INTEGER            I, IINFO, J, JB, NB
!     ..
!     .. External Subroutines ..
      EXTERNAL           DGEMM, DGETRF2, DLASWP, DTRSM, XERBLA
!     ..
!     .. External Functions ..
      INTEGER            ILAENV
      EXTERNAL           ILAENV
!     ..
!     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN
!     ..
!     .. Executable Statements ..
!
!     Test the input parameters.
!
      INFO = 0
      IF( M.LT.0 ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
         INFO = -4
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DGETRF', -INFO )
         RETURN
      END IF
!
!     Quick return if possible
!
      IF( M.EQ.0 .OR. N.EQ.0 ) &
         RETURN
!
!     Determine the block size for this environment.
!
      NB = ILAENV( 1, 'DGETRF', ' ', M, N, -1, -1 )
      IF( NB.LE.1 .OR. NB.GE.MIN( M, N ) ) THEN
!
!        Use unblocked code.
!
         CALL DGETRF2( M, N, A, LDA, IPIV, INFO )
      ELSE
!
!        Use blocked code.
!
         DO 20 J = 1, MIN( M, N ), NB
            JB = MIN( MIN( M, N )-J+1, NB )
!
!           Factor diagonal and subdiagonal blocks and test for exact
!           singularity.
!
            CALL DGETRF2( M-J+1, JB, A( J, J ), LDA, IPIV( J ), IINFO )
!
!           Adjust INFO and the pivot indices.
!
            IF( INFO.EQ.0 .AND. IINFO.GT.0 ) &
               INFO = IINFO + J - 1
            DO 10 I = J, MIN( M, J+JB-1 )
               IPIV( I ) = J - 1 + IPIV( I )
   10       CONTINUE
!
!           Apply interchanges to columns 1:J-1.
!
            CALL DLASWP( J-1, A, LDA, J, J+JB-1, IPIV, 1 )
!
            IF( J+JB.LE.N ) THEN
!
!              Apply interchanges to columns J+JB:N.
!
               CALL DLASWP( N-J-JB+1, A( 1, J+JB ), LDA, J, J+JB-1, &
                            IPIV, 1 )
!
!              Compute block row of U.
!
               CALL DTRSM( 'Left', 'Lower', 'No transpose', 'Unit', JB, &
                           N-J-JB+1, ONE, A( J, J ), LDA, A( J, J+JB ), &
                           LDA )
               IF( J+JB.LE.M ) THEN
!
!                 Update trailing submatrix.
!
                  CALL DGEMM( 'No transpose', 'No transpose', M-J-JB+1, &
                              N-J-JB+1, JB, -ONE, A( J+JB, J ), LDA, &
                              A( J, J+JB ), LDA, ONE, A( J+JB, J+JB ), &
                              LDA )
               END IF
            END IF
   20    CONTINUE
      END IF
      RETURN
!
!     End of DGETRF
!
      END