dgeqrf.F90 Source File


Source Code

#include "ESMF_LapackBlas.inc"
!> \brief \b DGEQRF
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!> \htmlonly
!> Download DGEQRF + dependencies
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgeqrf.f">
!> [TGZ]</a>
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgeqrf.f">
!> [ZIP]</a>
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgeqrf.f">
!> [TXT]</a>
!> \endhtmlonly
!
!  Definition:
!  ===========
!
!       SUBROUTINE DGEQRF( M, N, A, LDA, TAU, WORK, LWORK, INFO )
!
!       .. Scalar Arguments ..
!       INTEGER            INFO, LDA, LWORK, M, N
!       ..
!       .. Array Arguments ..
!       DOUBLE PRECISION   A( LDA, * ), TAU( * ), WORK( * )
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> DGEQRF computes a QR factorization of a real M-by-N matrix A:
!> A = Q * R.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] M
!> \verbatim
!>          M is INTEGER
!>          The number of rows of the matrix A.  M >= 0.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>          The number of columns of the matrix A.  N >= 0.
!> \endverbatim
!>
!> \param[in,out] A
!> \verbatim
!>          A is DOUBLE PRECISION array, dimension (LDA,N)
!>          On entry, the M-by-N matrix A.
!>          On exit, the elements on and above the diagonal of the array
!>          contain the min(M,N)-by-N upper trapezoidal matrix R (R is
!>          upper triangular if m >= n); the elements below the diagonal,
!>          with the array TAU, represent the orthogonal matrix Q as a
!>          product of min(m,n) elementary reflectors (see Further
!>          Details).
!> \endverbatim
!>
!> \param[in] LDA
!> \verbatim
!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,M).
!> \endverbatim
!>
!> \param[out] TAU
!> \verbatim
!>          TAU is DOUBLE PRECISION array, dimension (min(M,N))
!>          The scalar factors of the elementary reflectors (see Further
!>          Details).
!> \endverbatim
!>
!> \param[out] WORK
!> \verbatim
!>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
!>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
!> \endverbatim
!>
!> \param[in] LWORK
!> \verbatim
!>          LWORK is INTEGER
!>          The dimension of the array WORK.  LWORK >= max(1,N).
!>          For optimum performance LWORK >= N*NB, where NB is
!>          the optimal blocksize.
!>
!>          If LWORK = -1, then a workspace query is assumed; the routine
!>          only calculates the optimal size of the WORK array, returns
!>          this value as the first entry of the WORK array, and no error
!>          message related to LWORK is issued by XERBLA.
!> \endverbatim
!>
!> \param[out] INFO
!> \verbatim
!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date November 2011
!
!> \ingroup doubleGEcomputational
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  The matrix Q is represented as a product of elementary reflectors
!>
!>     Q = H(1) H(2) . . . H(k), where k = min(m,n).
!>
!>  Each H(i) has the form
!>
!>     H(i) = I - tau * v * v**T
!>
!>  where tau is a real scalar, and v is a real vector with
!>  v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i),
!>  and tau in TAU(i).
!> \endverbatim
!>
!  =====================================================================
      SUBROUTINE DGEQRF( M, N, A, LDA, TAU, WORK, LWORK, INFO )
!
!  -- LAPACK computational routine (version 3.4.0) --
!  -- LAPACK is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     November 2011
!
!     .. Scalar Arguments ..
      INTEGER            INFO, LDA, LWORK, M, N
!     ..
!     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * ), TAU( * ), WORK( * )
!     ..
!
!  =====================================================================
!
!     .. Local Scalars ..
      LOGICAL            LQUERY
      INTEGER            I, IB, IINFO, IWS, K, LDWORK, LWKOPT, NB, &
     &                   NBMIN, NX
!     ..
!     .. External Subroutines ..
      EXTERNAL           DGEQR2, DLARFB, DLARFT, XERBLA
!     ..
!     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN
!     ..
!     .. External Functions ..
      INTEGER            ILAENV
      EXTERNAL           ILAENV
!     ..
!     .. Executable Statements ..
!
!     Test the input arguments
!
      INFO = 0
      NB = ILAENV( 1, 'DGEQRF', ' ', M, N, -1, -1 )
      LWKOPT = N*NB
      WORK( 1 ) = LWKOPT
      LQUERY = ( LWORK.EQ.-1 )
      IF( M.LT.0 ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
         INFO = -4
      ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN
         INFO = -7
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DGEQRF', -INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         RETURN
      END IF
!
!     Quick return if possible
!
      K = MIN( M, N )
      IF( K.EQ.0 ) THEN
         WORK( 1 ) = 1
         RETURN
      END IF
!
      NBMIN = 2
      NX = 0
      IWS = N
      IF( NB.GT.1 .AND. NB.LT.K ) THEN
!
!        Determine when to cross over from blocked to unblocked code.
!
         NX = MAX( 0, ILAENV( 3, 'DGEQRF', ' ', M, N, -1, -1 ) )
         IF( NX.LT.K ) THEN
!
!           Determine if workspace is large enough for blocked code.
!
            LDWORK = N
            IWS = LDWORK*NB
            IF( LWORK.LT.IWS ) THEN
!
!              Not enough workspace to use optimal NB:  reduce NB and
!              determine the minimum value of NB.
!
               NB = LWORK / LDWORK
               NBMIN = MAX( 2, ILAENV( 2, 'DGEQRF', ' ', M, N, -1, &
     &                 -1 ) )
            END IF
         END IF
      END IF
!
      IF( NB.GE.NBMIN .AND. NB.LT.K .AND. NX.LT.K ) THEN
!
!        Use blocked code initially
!
         DO 10 I = 1, K - NX, NB
            IB = MIN( K-I+1, NB )
!
!           Compute the QR factorization of the current block
!           A(i:m,i:i+ib-1)
!
            CALL DGEQR2( M-I+1, IB, A( I, I ), LDA, TAU( I ), WORK, &
     &                   IINFO )
            IF( I+IB.LE.N ) THEN
!
!              Form the triangular factor of the block reflector
!              H = H(i) H(i+1) . . . H(i+ib-1)
!
               CALL DLARFT( 'Forward', 'Columnwise', M-I+1, IB, &
     &                      A( I, I ), LDA, TAU( I ), WORK, LDWORK )
!
!              Apply H**T to A(i:m,i+ib:n) from the left
!
               CALL DLARFB( 'Left', 'Transpose', 'Forward', &
     &                      'Columnwise', M-I+1, N-I-IB+1, IB, &
     &                      A( I, I ), LDA, WORK, LDWORK, A( I, I+IB ), &
     &                      LDA, WORK( IB+1 ), LDWORK )
            END IF
   10    CONTINUE
      ELSE
         I = 1
      END IF
!
!     Use unblocked code to factor the last or only block.
!
      IF( I.LE.K ) &
     &   CALL DGEQR2( M-I+1, N-I+1, A( I, I ), LDA, TAU( I ), WORK, &
     &                IINFO )
!
      WORK( 1 ) = IWS
      RETURN
!
!     End of DGEQRF
!
      END