dbdsqr.F90 Source File


Source Code

#include "ESMF_LapackBlas.inc"
!> \brief \b DBDSQR
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!> \htmlonly
!> Download DBDSQR + dependencies
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dbdsqr.f">
!> [TGZ]</a>
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dbdsqr.f">
!> [ZIP]</a>
!> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dbdsqr.f">
!> [TXT]</a>
!> \endhtmlonly
!
!  Definition:
!  ===========
!
!       SUBROUTINE DBDSQR( UPLO, N, NCVT, NRU, NCC, D, E, VT, LDVT, U,
!                          LDU, C, LDC, WORK, INFO )
!
!       .. Scalar Arguments ..
!       CHARACTER          UPLO
!       INTEGER            INFO, LDC, LDU, LDVT, N, NCC, NCVT, NRU
!       ..
!       .. Array Arguments ..
!       DOUBLE PRECISION   C( LDC, * ), D( * ), E( * ), U( LDU, * ),
!      $                   VT( LDVT, * ), WORK( * )
!       ..
!
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> DBDSQR computes the singular values and, optionally, the right and/or
!> left singular vectors from the singular value decomposition (SVD) of
!> a real N-by-N (upper or lower) bidiagonal matrix B using the implicit
!> zero-shift QR algorithm.  The SVD of B has the form
!>
!>    B = Q * S * P**T
!>
!> where S is the diagonal matrix of singular values, Q is an orthogonal
!> matrix of left singular vectors, and P is an orthogonal matrix of
!> right singular vectors.  If left singular vectors are requested, this
!> subroutine actually returns U*Q instead of Q, and, if right singular
!> vectors are requested, this subroutine returns P**T*VT instead of
!> P**T, for given real input matrices U and VT.  When U and VT are the
!> orthogonal matrices that reduce a general matrix A to bidiagonal
!> form:  A = U*B*VT, as computed by DGEBRD, then
!>
!>    A = (U*Q) * S * (P**T*VT)
!>
!> is the SVD of A.  Optionally, the subroutine may also compute Q**T*C
!> for a given real input matrix C.
!>
!> See "Computing  Small Singular Values of Bidiagonal Matrices With
!> Guaranteed High Relative Accuracy," by J. Demmel and W. Kahan,
!> LAPACK Working Note #3 (or SIAM J. Sci. Statist. Comput. vol. 11,
!> no. 5, pp. 873-912, Sept 1990) and
!> "Accurate singular values and differential qd algorithms," by
!> B. Parlett and V. Fernando, Technical Report CPAM-554, Mathematics
!> Department, University of California at Berkeley, July 1992
!> for a detailed description of the algorithm.
!> \endverbatim
!
!  Arguments:
!  ==========
!
!> \param[in] UPLO
!> \verbatim
!>          UPLO is CHARACTER*1
!>          = 'U':  B is upper bidiagonal;
!>          = 'L':  B is lower bidiagonal.
!> \endverbatim
!>
!> \param[in] N
!> \verbatim
!>          N is INTEGER
!>          The order of the matrix B.  N >= 0.
!> \endverbatim
!>
!> \param[in] NCVT
!> \verbatim
!>          NCVT is INTEGER
!>          The number of columns of the matrix VT. NCVT >= 0.
!> \endverbatim
!>
!> \param[in] NRU
!> \verbatim
!>          NRU is INTEGER
!>          The number of rows of the matrix U. NRU >= 0.
!> \endverbatim
!>
!> \param[in] NCC
!> \verbatim
!>          NCC is INTEGER
!>          The number of columns of the matrix C. NCC >= 0.
!> \endverbatim
!>
!> \param[in,out] D
!> \verbatim
!>          D is DOUBLE PRECISION array, dimension (N)
!>          On entry, the n diagonal elements of the bidiagonal matrix B.
!>          On exit, if INFO=0, the singular values of B in decreasing
!>          order.
!> \endverbatim
!>
!> \param[in,out] E
!> \verbatim
!>          E is DOUBLE PRECISION array, dimension (N-1)
!>          On entry, the N-1 offdiagonal elements of the bidiagonal
!>          matrix B.
!>          On exit, if INFO = 0, E is destroyed; if INFO > 0, D and E
!>          will contain the diagonal and superdiagonal elements of a
!>          bidiagonal matrix orthogonally equivalent to the one given
!>          as input.
!> \endverbatim
!>
!> \param[in,out] VT
!> \verbatim
!>          VT is DOUBLE PRECISION array, dimension (LDVT, NCVT)
!>          On entry, an N-by-NCVT matrix VT.
!>          On exit, VT is overwritten by P**T * VT.
!>          Not referenced if NCVT = 0.
!> \endverbatim
!>
!> \param[in] LDVT
!> \verbatim
!>          LDVT is INTEGER
!>          The leading dimension of the array VT.
!>          LDVT >= max(1,N) if NCVT > 0; LDVT >= 1 if NCVT = 0.
!> \endverbatim
!>
!> \param[in,out] U
!> \verbatim
!>          U is DOUBLE PRECISION array, dimension (LDU, N)
!>          On entry, an NRU-by-N matrix U.
!>          On exit, U is overwritten by U * Q.
!>          Not referenced if NRU = 0.
!> \endverbatim
!>
!> \param[in] LDU
!> \verbatim
!>          LDU is INTEGER
!>          The leading dimension of the array U.  LDU >= max(1,NRU).
!> \endverbatim
!>
!> \param[in,out] C
!> \verbatim
!>          C is DOUBLE PRECISION array, dimension (LDC, NCC)
!>          On entry, an N-by-NCC matrix C.
!>          On exit, C is overwritten by Q**T * C.
!>          Not referenced if NCC = 0.
!> \endverbatim
!>
!> \param[in] LDC
!> \verbatim
!>          LDC is INTEGER
!>          The leading dimension of the array C.
!>          LDC >= max(1,N) if NCC > 0; LDC >=1 if NCC = 0.
!> \endverbatim
!>
!> \param[out] WORK
!> \verbatim
!>          WORK is DOUBLE PRECISION array, dimension (4*N)
!> \endverbatim
!>
!> \param[out] INFO
!> \verbatim
!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  If INFO = -i, the i-th argument had an illegal value
!>          > 0:
!>             if NCVT = NRU = NCC = 0,
!>                = 1, a split was marked by a positive value in E
!>                = 2, current block of Z not diagonalized after 30*N
!>                     iterations (in inner while loop)
!>                = 3, termination criterion of outer while loop not met
!>                     (program created more than N unreduced blocks)
!>             else NCVT = NRU = NCC = 0,
!>                   the algorithm did not converge; D and E contain the
!>                   elements of a bidiagonal matrix which is orthogonally
!>                   similar to the input matrix B;  if INFO = i, i
!>                   elements of E have not converged to zero.
!> \endverbatim
!
!> \par Internal Parameters:
!  =========================
!>
!> \verbatim
!>  TOLMUL  DOUBLE PRECISION, default = max(10,min(100,EPS**(-1/8)))
!>          TOLMUL controls the convergence criterion of the QR loop.
!>          If it is positive, TOLMUL*EPS is the desired relative
!>             precision in the computed singular values.
!>          If it is negative, abs(TOLMUL*EPS*sigma_max) is the
!>             desired absolute accuracy in the computed singular
!>             values (corresponds to relative accuracy
!>             abs(TOLMUL*EPS) in the largest singular value.
!>          abs(TOLMUL) should be between 1 and 1/EPS, and preferably
!>             between 10 (for fast convergence) and .1/EPS
!>             (for there to be some accuracy in the results).
!>          Default is to lose at either one eighth or 2 of the
!>             available decimal digits in each computed singular value
!>             (whichever is smaller).
!>
!>  MAXITR  INTEGER, default = 6
!>          MAXITR controls the maximum number of passes of the
!>          algorithm through its inner loop. The algorithms stops
!>          (and so fails to converge) if the number of passes
!>          through the inner loop exceeds MAXITR*N**2.
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Univ. of Tennessee
!> \author Univ. of California Berkeley
!> \author Univ. of Colorado Denver
!> \author NAG Ltd.
!
!> \date November 2011
!
!> \ingroup auxOTHERcomputational
!
!  =====================================================================
      SUBROUTINE DBDSQR( UPLO, N, NCVT, NRU, NCC, D, E, VT, LDVT, U, &
     &                   LDU, C, LDC, WORK, INFO )
!
!  -- LAPACK computational routine (version 3.4.0) --
!  -- LAPACK is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!     November 2011
!
!     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            INFO, LDC, LDU, LDVT, N, NCC, NCVT, NRU
!     ..
!     .. Array Arguments ..
      DOUBLE PRECISION   C( LDC, * ), D( * ), E( * ), U( LDU, * ), &
     &                   VT( LDVT, * ), WORK( * )
!     ..
!
!  =====================================================================
!
!     .. Parameters ..
      DOUBLE PRECISION   ZERO
      PARAMETER          ( ZERO = 0.0D0 )
      DOUBLE PRECISION   ONE
      PARAMETER          ( ONE = 1.0D0 )
      DOUBLE PRECISION   NEGONE
      PARAMETER          ( NEGONE = -1.0D0 )
      DOUBLE PRECISION   HNDRTH
      PARAMETER          ( HNDRTH = 0.01D0 )
      DOUBLE PRECISION   TEN
      PARAMETER          ( TEN = 10.0D0 )
      DOUBLE PRECISION   HNDRD
      PARAMETER          ( HNDRD = 100.0D0 )
      DOUBLE PRECISION   MEIGTH
      PARAMETER          ( MEIGTH = -0.125D0 )
      INTEGER            MAXITR
      PARAMETER          ( MAXITR = 6 )
!     ..
!     .. Local Scalars ..
      LOGICAL            LOWER, ROTATE
      INTEGER            I, IDIR, ISUB, ITER, J, LL, LLL, M, MAXIT, NM1, &
     &                   NM12, NM13, OLDLL, OLDM
      DOUBLE PRECISION   ABSE, ABSS, COSL, COSR, CS, EPS, F, G, H, MU, &
     &                   OLDCS, OLDSN, R, SHIFT, SIGMN, SIGMX, SINL, &
     &                   SINR, SLL, SMAX, SMIN, SMINL, SMINOA, &
     &                   SN, THRESH, TOL, TOLMUL, UNFL
!     ..
!     .. External Functions ..
      LOGICAL            LSAME
      DOUBLE PRECISION   DLAMCH
      EXTERNAL           LSAME, DLAMCH
!     ..
!     .. External Subroutines ..
      EXTERNAL           DLARTG, DLAS2, DLASQ1, DLASR, DLASV2, DROT, &
     &                   DSCAL, DSWAP, XERBLA
!     ..
!     .. Intrinsic Functions ..
      INTRINSIC          ABS, DBLE, MAX, MIN, SIGN, SQRT
!     ..
!     .. Executable Statements ..
!
!     Test the input parameters.
!
      INFO = 0
      LOWER = LSAME( UPLO, 'L' )
      IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LOWER ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( NCVT.LT.0 ) THEN
         INFO = -3
      ELSE IF( NRU.LT.0 ) THEN
         INFO = -4
      ELSE IF( NCC.LT.0 ) THEN
         INFO = -5
      ELSE IF( ( NCVT.EQ.0 .AND. LDVT.LT.1 ) .OR. &
     &         ( NCVT.GT.0 .AND. LDVT.LT.MAX( 1, N ) ) ) THEN
         INFO = -9
      ELSE IF( LDU.LT.MAX( 1, NRU ) ) THEN
         INFO = -11
      ELSE IF( ( NCC.EQ.0 .AND. LDC.LT.1 ) .OR. &
     &         ( NCC.GT.0 .AND. LDC.LT.MAX( 1, N ) ) ) THEN
         INFO = -13
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DBDSQR', -INFO )
         RETURN
      END IF
      IF( N.EQ.0 ) &
     &   RETURN
      IF( N.EQ.1 ) &
     &   GO TO 160
!
!     ROTATE is true if any singular vectors desired, false otherwise
!
      ROTATE = ( NCVT.GT.0 ) .OR. ( NRU.GT.0 ) .OR. ( NCC.GT.0 )
!
!     If no singular vectors desired, use qd algorithm
!
      IF( .NOT.ROTATE ) THEN
         CALL DLASQ1( N, D, E, WORK, INFO )
!
!     If INFO equals 2, dqds didn't finish, try to finish
!
         IF( INFO .NE. 2 ) RETURN
         INFO = 0
      END IF
!
      NM1 = N - 1
      NM12 = NM1 + NM1
      NM13 = NM12 + NM1
      IDIR = 0
!
!     Get machine constants
!
      EPS = DLAMCH( 'Epsilon' )
      UNFL = DLAMCH( 'Safe minimum' )
!
!     If matrix lower bidiagonal, rotate to be upper bidiagonal
!     by applying Givens rotations on the left
!
      IF( LOWER ) THEN
         DO 10 I = 1, N - 1
            CALL DLARTG( D( I ), E( I ), CS, SN, R )
            D( I ) = R
            E( I ) = SN*D( I+1 )
            D( I+1 ) = CS*D( I+1 )
            WORK( I ) = CS
            WORK( NM1+I ) = SN
   10    CONTINUE
!
!        Update singular vectors if desired
!
         IF( NRU.GT.0 ) &
     &      CALL DLASR( 'R', 'V', 'F', NRU, N, WORK( 1 ), WORK( N ), U, &
     &                  LDU )
         IF( NCC.GT.0 ) &
     &      CALL DLASR( 'L', 'V', 'F', N, NCC, WORK( 1 ), WORK( N ), C, &
     &                  LDC )
      END IF
!
!     Compute singular values to relative accuracy TOL
!     (By setting TOL to be negative, algorithm will compute
!     singular values to absolute accuracy ABS(TOL)*norm(input matrix))
!
      TOLMUL = MAX( TEN, MIN( HNDRD, EPS**MEIGTH ) )
      TOL = TOLMUL*EPS
!
!     Compute approximate maximum, minimum singular values
!
      SMAX = ZERO
      DO 20 I = 1, N
         SMAX = MAX( SMAX, ABS( D( I ) ) )
   20 CONTINUE
      DO 30 I = 1, N - 1
         SMAX = MAX( SMAX, ABS( E( I ) ) )
   30 CONTINUE
      SMINL = ZERO
      IF( TOL.GE.ZERO ) THEN
!
!        Relative accuracy desired
!
         SMINOA = ABS( D( 1 ) )
         IF( SMINOA.EQ.ZERO ) &
     &      GO TO 50
         MU = SMINOA
         DO 40 I = 2, N
            MU = ABS( D( I ) )*( MU / ( MU+ABS( E( I-1 ) ) ) )
            SMINOA = MIN( SMINOA, MU )
            IF( SMINOA.EQ.ZERO ) &
     &         GO TO 50
   40    CONTINUE
   50    CONTINUE
         SMINOA = SMINOA / SQRT( DBLE( N ) )
         THRESH = MAX( TOL*SMINOA, MAXITR*N*N*UNFL )
      ELSE
!
!        Absolute accuracy desired
!
         THRESH = MAX( ABS( TOL )*SMAX, MAXITR*N*N*UNFL )
      END IF
!
!     Prepare for main iteration loop for the singular values
!     (MAXIT is the maximum number of passes through the inner
!     loop permitted before nonconvergence signalled.)
!
      MAXIT = MAXITR*N*N
      ITER = 0
      OLDLL = -1
      OLDM = -1
!
!     M points to last element of unconverged part of matrix
!
      M = N
!
!     Begin main iteration loop
!
   60 CONTINUE
!
!     Check for convergence or exceeding iteration count
!
      IF( M.LE.1 ) &
     &   GO TO 160
      IF( ITER.GT.MAXIT ) &
     &   GO TO 200
!
!     Find diagonal block of matrix to work on
!
      IF( TOL.LT.ZERO .AND. ABS( D( M ) ).LE.THRESH ) &
     &   D( M ) = ZERO
      SMAX = ABS( D( M ) )
      SMIN = SMAX
      DO 70 LLL = 1, M - 1
         LL = M - LLL
         ABSS = ABS( D( LL ) )
         ABSE = ABS( E( LL ) )
         IF( TOL.LT.ZERO .AND. ABSS.LE.THRESH ) &
     &      D( LL ) = ZERO
         IF( ABSE.LE.THRESH ) &
     &      GO TO 80
         SMIN = MIN( SMIN, ABSS )
         SMAX = MAX( SMAX, ABSS, ABSE )
   70 CONTINUE
      LL = 0
      GO TO 90
   80 CONTINUE
      E( LL ) = ZERO
!
!     Matrix splits since E(LL) = 0
!
      IF( LL.EQ.M-1 ) THEN
!
!        Convergence of bottom singular value, return to top of loop
!
         M = M - 1
         GO TO 60
      END IF
   90 CONTINUE
      LL = LL + 1
!
!     E(LL) through E(M-1) are nonzero, E(LL-1) is zero
!
      IF( LL.EQ.M-1 ) THEN
!
!        2 by 2 block, handle separately
!
         CALL DLASV2( D( M-1 ), E( M-1 ), D( M ), SIGMN, SIGMX, SINR, &
     &                COSR, SINL, COSL )
         D( M-1 ) = SIGMX
         E( M-1 ) = ZERO
         D( M ) = SIGMN
!
!        Compute singular vectors, if desired
!
         IF( NCVT.GT.0 ) &
     &      CALL DROT( NCVT, VT( M-1, 1 ), LDVT, VT( M, 1 ), LDVT, COSR, &
     &                 SINR )
         IF( NRU.GT.0 ) &
     &      CALL DROT( NRU, U( 1, M-1 ), 1, U( 1, M ), 1, COSL, SINL )
         IF( NCC.GT.0 ) &
     &      CALL DROT( NCC, C( M-1, 1 ), LDC, C( M, 1 ), LDC, COSL, &
     &                 SINL )
         M = M - 2
         GO TO 60
      END IF
!
!     If working on new submatrix, choose shift direction
!     (from larger end diagonal element towards smaller)
!
      IF( LL.GT.OLDM .OR. M.LT.OLDLL ) THEN
         IF( ABS( D( LL ) ).GE.ABS( D( M ) ) ) THEN
!
!           Chase bulge from top (big end) to bottom (small end)
!
            IDIR = 1
         ELSE
!
!           Chase bulge from bottom (big end) to top (small end)
!
            IDIR = 2
         END IF
      END IF
!
!     Apply convergence tests
!
      IF( IDIR.EQ.1 ) THEN
!
!        Run convergence test in forward direction
!        First apply standard test to bottom of matrix
!
         IF( ABS( E( M-1 ) ).LE.ABS( TOL )*ABS( D( M ) ) .OR. &
     &       ( TOL.LT.ZERO .AND. ABS( E( M-1 ) ).LE.THRESH ) ) THEN
            E( M-1 ) = ZERO
            GO TO 60
         END IF
!
         IF( TOL.GE.ZERO ) THEN
!
!           If relative accuracy desired,
!           apply convergence criterion forward
!
            MU = ABS( D( LL ) )
            SMINL = MU
            DO 100 LLL = LL, M - 1
               IF( ABS( E( LLL ) ).LE.TOL*MU ) THEN
                  E( LLL ) = ZERO
                  GO TO 60
               END IF
               MU = ABS( D( LLL+1 ) )*( MU / ( MU+ABS( E( LLL ) ) ) )
               SMINL = MIN( SMINL, MU )
  100       CONTINUE
         END IF
!
      ELSE
!
!        Run convergence test in backward direction
!        First apply standard test to top of matrix
!
         IF( ABS( E( LL ) ).LE.ABS( TOL )*ABS( D( LL ) ) .OR. &
     &       ( TOL.LT.ZERO .AND. ABS( E( LL ) ).LE.THRESH ) ) THEN
            E( LL ) = ZERO
            GO TO 60
         END IF
!
         IF( TOL.GE.ZERO ) THEN
!
!           If relative accuracy desired,
!           apply convergence criterion backward
!
            MU = ABS( D( M ) )
            SMINL = MU
            DO 110 LLL = M - 1, LL, -1
               IF( ABS( E( LLL ) ).LE.TOL*MU ) THEN
                  E( LLL ) = ZERO
                  GO TO 60
               END IF
               MU = ABS( D( LLL ) )*( MU / ( MU+ABS( E( LLL ) ) ) )
               SMINL = MIN( SMINL, MU )
  110       CONTINUE
         END IF
      END IF
      OLDLL = LL
      OLDM = M
!
!     Compute shift.  First, test if shifting would ruin relative
!     accuracy, and if so set the shift to zero.
!
      IF( TOL.GE.ZERO .AND. N*TOL*( SMINL / SMAX ).LE. &
     &    MAX( EPS, HNDRTH*TOL ) ) THEN
!
!        Use a zero shift to avoid loss of relative accuracy
!
         SHIFT = ZERO
      ELSE
!
!        Compute the shift from 2-by-2 block at end of matrix
!
         IF( IDIR.EQ.1 ) THEN
            SLL = ABS( D( LL ) )
            CALL DLAS2( D( M-1 ), E( M-1 ), D( M ), SHIFT, R )
         ELSE
            SLL = ABS( D( M ) )
            CALL DLAS2( D( LL ), E( LL ), D( LL+1 ), SHIFT, R )
         END IF
!
!        Test if shift negligible, and if so set to zero
!
         IF( SLL.GT.ZERO ) THEN
            IF( ( SHIFT / SLL )**2.LT.EPS ) &
     &         SHIFT = ZERO
         END IF
      END IF
!
!     Increment iteration count
!
      ITER = ITER + M - LL
!
!     If SHIFT = 0, do simplified QR iteration
!
      IF( SHIFT.EQ.ZERO ) THEN
         IF( IDIR.EQ.1 ) THEN
!
!           Chase bulge from top to bottom
!           Save cosines and sines for later singular vector updates
!
            CS = ONE
            OLDCS = ONE
            DO 120 I = LL, M - 1
               CALL DLARTG( D( I )*CS, E( I ), CS, SN, R )
               IF( I.GT.LL ) &
     &            E( I-1 ) = OLDSN*R
               CALL DLARTG( OLDCS*R, D( I+1 )*SN, OLDCS, OLDSN, D( I ) )
               WORK( I-LL+1 ) = CS
               WORK( I-LL+1+NM1 ) = SN
               WORK( I-LL+1+NM12 ) = OLDCS
               WORK( I-LL+1+NM13 ) = OLDSN
  120       CONTINUE
            H = D( M )*CS
            D( M ) = H*OLDCS
            E( M-1 ) = H*OLDSN
!
!           Update singular vectors
!
            IF( NCVT.GT.0 ) &
     &         CALL DLASR( 'L', 'V', 'F', M-LL+1, NCVT, WORK( 1 ), &
     &                     WORK( N ), VT( LL, 1 ), LDVT )
            IF( NRU.GT.0 ) &
     &         CALL DLASR( 'R', 'V', 'F', NRU, M-LL+1, WORK( NM12+1 ), &
     &                     WORK( NM13+1 ), U( 1, LL ), LDU )
            IF( NCC.GT.0 ) &
     &         CALL DLASR( 'L', 'V', 'F', M-LL+1, NCC, WORK( NM12+1 ), &
     &                     WORK( NM13+1 ), C( LL, 1 ), LDC )
!
!           Test convergence
!
            IF( ABS( E( M-1 ) ).LE.THRESH ) &
     &         E( M-1 ) = ZERO
!
         ELSE
!
!           Chase bulge from bottom to top
!           Save cosines and sines for later singular vector updates
!
            CS = ONE
            OLDCS = ONE
            DO 130 I = M, LL + 1, -1
               CALL DLARTG( D( I )*CS, E( I-1 ), CS, SN, R )
               IF( I.LT.M ) &
     &            E( I ) = OLDSN*R
               CALL DLARTG( OLDCS*R, D( I-1 )*SN, OLDCS, OLDSN, D( I ) )
               WORK( I-LL ) = CS
               WORK( I-LL+NM1 ) = -SN
               WORK( I-LL+NM12 ) = OLDCS
               WORK( I-LL+NM13 ) = -OLDSN
  130       CONTINUE
            H = D( LL )*CS
            D( LL ) = H*OLDCS
            E( LL ) = H*OLDSN
!
!           Update singular vectors
!
            IF( NCVT.GT.0 ) &
     &         CALL DLASR( 'L', 'V', 'B', M-LL+1, NCVT, WORK( NM12+1 ), &
     &                     WORK( NM13+1 ), VT( LL, 1 ), LDVT )
            IF( NRU.GT.0 ) &
     &         CALL DLASR( 'R', 'V', 'B', NRU, M-LL+1, WORK( 1 ), &
     &                     WORK( N ), U( 1, LL ), LDU )
            IF( NCC.GT.0 ) &
     &         CALL DLASR( 'L', 'V', 'B', M-LL+1, NCC, WORK( 1 ), &
     &                     WORK( N ), C( LL, 1 ), LDC )
!
!           Test convergence
!
            IF( ABS( E( LL ) ).LE.THRESH ) &
     &         E( LL ) = ZERO
         END IF
      ELSE
!
!        Use nonzero shift
!
         IF( IDIR.EQ.1 ) THEN
!
!           Chase bulge from top to bottom
!           Save cosines and sines for later singular vector updates
!
            F = ( ABS( D( LL ) )-SHIFT )* &
     &          ( SIGN( ONE, D( LL ) )+SHIFT / D( LL ) )
            G = E( LL )
            DO 140 I = LL, M - 1
               CALL DLARTG( F, G, COSR, SINR, R )
               IF( I.GT.LL ) &
     &            E( I-1 ) = R
               F = COSR*D( I ) + SINR*E( I )
               E( I ) = COSR*E( I ) - SINR*D( I )
               G = SINR*D( I+1 )
               D( I+1 ) = COSR*D( I+1 )
               CALL DLARTG( F, G, COSL, SINL, R )
               D( I ) = R
               F = COSL*E( I ) + SINL*D( I+1 )
               D( I+1 ) = COSL*D( I+1 ) - SINL*E( I )
               IF( I.LT.M-1 ) THEN
                  G = SINL*E( I+1 )
                  E( I+1 ) = COSL*E( I+1 )
               END IF
               WORK( I-LL+1 ) = COSR
               WORK( I-LL+1+NM1 ) = SINR
               WORK( I-LL+1+NM12 ) = COSL
               WORK( I-LL+1+NM13 ) = SINL
  140       CONTINUE
            E( M-1 ) = F
!
!           Update singular vectors
!
            IF( NCVT.GT.0 ) &
     &         CALL DLASR( 'L', 'V', 'F', M-LL+1, NCVT, WORK( 1 ), &
     &                     WORK( N ), VT( LL, 1 ), LDVT )
            IF( NRU.GT.0 ) &
     &         CALL DLASR( 'R', 'V', 'F', NRU, M-LL+1, WORK( NM12+1 ), &
     &                     WORK( NM13+1 ), U( 1, LL ), LDU )
            IF( NCC.GT.0 ) &
     &         CALL DLASR( 'L', 'V', 'F', M-LL+1, NCC, WORK( NM12+1 ), &
     &                     WORK( NM13+1 ), C( LL, 1 ), LDC )
!
!           Test convergence
!
            IF( ABS( E( M-1 ) ).LE.THRESH ) &
     &         E( M-1 ) = ZERO
!
         ELSE
!
!           Chase bulge from bottom to top
!           Save cosines and sines for later singular vector updates
!
            F = ( ABS( D( M ) )-SHIFT )*( SIGN( ONE, D( M ) )+SHIFT / &
     &          D( M ) )
            G = E( M-1 )
            DO 150 I = M, LL + 1, -1
               CALL DLARTG( F, G, COSR, SINR, R )
               IF( I.LT.M ) &
     &            E( I ) = R
               F = COSR*D( I ) + SINR*E( I-1 )
               E( I-1 ) = COSR*E( I-1 ) - SINR*D( I )
               G = SINR*D( I-1 )
               D( I-1 ) = COSR*D( I-1 )
               CALL DLARTG( F, G, COSL, SINL, R )
               D( I ) = R
               F = COSL*E( I-1 ) + SINL*D( I-1 )
               D( I-1 ) = COSL*D( I-1 ) - SINL*E( I-1 )
               IF( I.GT.LL+1 ) THEN
                  G = SINL*E( I-2 )
                  E( I-2 ) = COSL*E( I-2 )
               END IF
               WORK( I-LL ) = COSR
               WORK( I-LL+NM1 ) = -SINR
               WORK( I-LL+NM12 ) = COSL
               WORK( I-LL+NM13 ) = -SINL
  150       CONTINUE
            E( LL ) = F
!
!           Test convergence
!
            IF( ABS( E( LL ) ).LE.THRESH ) &
     &         E( LL ) = ZERO
!
!           Update singular vectors if desired
!
            IF( NCVT.GT.0 ) &
     &         CALL DLASR( 'L', 'V', 'B', M-LL+1, NCVT, WORK( NM12+1 ), &
     &                     WORK( NM13+1 ), VT( LL, 1 ), LDVT )
            IF( NRU.GT.0 ) &
     &         CALL DLASR( 'R', 'V', 'B', NRU, M-LL+1, WORK( 1 ), &
     &                     WORK( N ), U( 1, LL ), LDU )
            IF( NCC.GT.0 ) &
     &         CALL DLASR( 'L', 'V', 'B', M-LL+1, NCC, WORK( 1 ), &
     &                     WORK( N ), C( LL, 1 ), LDC )
         END IF
      END IF
!
!     QR iteration finished, go back and check convergence
!
      GO TO 60
!
!     All singular values converged, so make them positive
!
  160 CONTINUE
      DO 170 I = 1, N
         IF( D( I ).LT.ZERO ) THEN
            D( I ) = -D( I )
!
!           Change sign of singular vectors, if desired
!
            IF( NCVT.GT.0 ) &
     &         CALL DSCAL( NCVT, NEGONE, VT( I, 1 ), LDVT )
         END IF
  170 CONTINUE
!
!     Sort the singular values into decreasing order (insertion sort on
!     singular values, but only one transposition per singular vector)
!
      DO 190 I = 1, N - 1
!
!        Scan for smallest D(I)
!
         ISUB = 1
         SMIN = D( 1 )
         DO 180 J = 2, N + 1 - I
            IF( D( J ).LE.SMIN ) THEN
               ISUB = J
               SMIN = D( J )
            END IF
  180    CONTINUE
         IF( ISUB.NE.N+1-I ) THEN
!
!           Swap singular values and vectors
!
            D( ISUB ) = D( N+1-I )
            D( N+1-I ) = SMIN
            IF( NCVT.GT.0 ) &
     &         CALL DSWAP( NCVT, VT( ISUB, 1 ), LDVT, VT( N+1-I, 1 ), &
     &                     LDVT )
            IF( NRU.GT.0 ) &
     &         CALL DSWAP( NRU, U( 1, ISUB ), 1, U( 1, N+1-I ), 1 )
            IF( NCC.GT.0 ) &
     &         CALL DSWAP( NCC, C( ISUB, 1 ), LDC, C( N+1-I, 1 ), LDC )
         END IF
  190 CONTINUE
      GO TO 220
!
!     Maximum number of iterations exceeded, failure to converge
!
  200 CONTINUE
      INFO = 0
      DO 210 I = 1, N - 1
         IF( E( I ).NE.ZERO ) &
     &      INFO = INFO + 1
  210 CONTINUE
  220 CONTINUE
      RETURN
!
!     End of DBDSQR
!
      END