\brief \b ESMF_DORMLQ \htmlonly Download ESMF_DORMLQ + dependencies [TGZ] [ZIP] [TXT] \endhtmlonly \par Purpose:
\verbatim
ESMF_DORMLQ overwrites the general real M-by-N matrix C with
SIDE = 'L' SIDE = 'R'
TRANS = ‘N’: Q * C C * Q TRANS = ‘T’: QT * C C * QT
where Q is a real orthogonal matrix defined as the product of k elementary reflectors
Q = H(k) . . . H(2) H(1)
as returned by ESMF_DGELQF. Q is of order M if SIDE = ‘L’ and of order N if SIDE = ‘R’. \endverbatim \param[in] SIDE \verbatim SIDE is CHARACTER1 = ‘L’: apply Q or QT from the Left; = ‘R’: apply Q or Q*T from the Right. \endverbatim
\param[in] TRANS \verbatim TRANS is CHARACTER1 = ‘N’: No transpose, apply Q; = ‘T’: Transpose, apply Q*T. \endverbatim
\param[in] M \verbatim M is INTEGER The number of rows of the matrix C. M >= 0. \endverbatim
\param[in] N \verbatim N is INTEGER The number of columns of the matrix C. N >= 0. \endverbatim
\param[in] K \verbatim K is INTEGER The number of elementary reflectors whose product defines the matrix Q. If SIDE = ‘L’, M >= K >= 0; if SIDE = ‘R’, N >= K >= 0. \endverbatim
\param[in] A \verbatim A is DOUBLE PRECISION array, dimension (LDA,M) if SIDE = ‘L’, (LDA,N) if SIDE = ‘R’ The i-th row must contain the vector which defines the elementary reflector H(i), for i = 1,2,…,k, as returned by ESMF_DGELQF in the first k rows of its array argument A. A is modified by the routine but restored on exit. \endverbatim
\param[in] LDA \verbatim LDA is INTEGER The leading dimension of the array A. LDA >= max(1,K). \endverbatim
\param[in] TAU \verbatim TAU is DOUBLE PRECISION array, dimension (K) TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by ESMF_DGELQF. \endverbatim
\param[in,out] C \verbatim C is DOUBLE PRECISION array, dimension (LDC,N) On entry, the M-by-N matrix C. On exit, C is overwritten by QC or QTC or CQT or CQ. \endverbatim
\param[in] LDC \verbatim LDC is INTEGER The leading dimension of the array C. LDC >= max(1,M). \endverbatim
\param[out] WORK \verbatim WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK. \endverbatim
\param[in] LWORK \verbatim LWORK is INTEGER The dimension of the array WORK. If SIDE = ‘L’, LWORK >= max(1,N); if SIDE = ‘R’, LWORK >= max(1,M). For optimum performance LWORK >= NNB if SIDE = ‘L’, and LWORK >= MNB if SIDE = ‘R’, where NB is the optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by ESMF_XERBLA.
\endverbatim
\param[out] INFO \verbatim INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value \endverbatim \author Univ. of Tennessee \author Univ. of California Berkeley \author Univ. of Colorado Denver \author NAG Ltd. \date November 2011 \ingroup doubleOTHERcomputational
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
character(len=1) | :: | SIDE | ||||
character(len=1) | :: | TRANS | ||||
integer | :: | M | ||||
integer | :: | N | ||||
integer | :: | K | ||||
double precision | :: | A(LDA,*) | ||||
integer | :: | LDA | ||||
double precision | :: | TAU(*) | ||||
double precision | :: | C(LDC,*) | ||||
integer | :: | LDC | ||||
double precision | :: | WORK(*) | ||||
integer | :: | LWORK | ||||
integer | :: | INFO |