ESMF_DORM2L Subroutine

subroutine ESMF_DORM2L(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, INFO)

\brief \b ESMF_DORM2L multiplies a general matrix by the orthogonal matrix from a QL factorization determined by sgeqlf (unblocked algorithm). \htmlonly Download ESMF_DORM2L + dependencies [TGZ] [ZIP] [TXT] \endhtmlonly \par Purpose:

\verbatim

ESMF_DORM2L overwrites the general real m by n matrix C with

  Q * C  if SIDE = 'L' and TRANS = 'N', or

  Q**T * C  if SIDE = 'L' and TRANS = 'T', or

  C * Q  if SIDE = 'R' and TRANS = 'N', or

  C * Q**T if SIDE = 'R' and TRANS = 'T',

where Q is a real orthogonal matrix defined as the product of k elementary reflectors

  Q = H(k) . . . H(2) H(1)

as returned by DGEQLF. Q is of order m if SIDE = ‘L’ and of order n if SIDE = ‘R’. \endverbatim \param[in] SIDE \verbatim SIDE is CHARACTER1 = ‘L’: apply Q or QT from the Left = ‘R’: apply Q or Q*T from the Right \endverbatim

\param[in] TRANS \verbatim TRANS is CHARACTER1 = ‘N’: apply Q (No transpose) = ‘T’: apply Q*T (Transpose) \endverbatim

\param[in] M \verbatim M is INTEGER The number of rows of the matrix C. M >= 0. \endverbatim

\param[in] N \verbatim N is INTEGER The number of columns of the matrix C. N >= 0. \endverbatim

\param[in] K \verbatim K is INTEGER The number of elementary reflectors whose product defines the matrix Q. If SIDE = ‘L’, M >= K >= 0; if SIDE = ‘R’, N >= K >= 0. \endverbatim

\param[in] A \verbatim A is DOUBLE PRECISION array, dimension (LDA,K) The i-th column must contain the vector which defines the elementary reflector H(i), for i = 1,2,…,k, as returned by DGEQLF in the last k columns of its array argument A. A is modified by the routine but restored on exit. \endverbatim

\param[in] LDA \verbatim LDA is INTEGER The leading dimension of the array A. If SIDE = ‘L’, LDA >= max(1,M); if SIDE = ‘R’, LDA >= max(1,N). \endverbatim

\param[in] TAU \verbatim TAU is DOUBLE PRECISION array, dimension (K) TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by DGEQLF. \endverbatim

\param[in,out] C \verbatim C is DOUBLE PRECISION array, dimension (LDC,N) On entry, the m by n matrix C. On exit, C is overwritten by QC or QTC or CQT or CQ. \endverbatim

\param[in] LDC \verbatim LDC is INTEGER The leading dimension of the array C. LDC >= max(1,M). \endverbatim

\param[out] WORK \verbatim WORK is DOUBLE PRECISION array, dimension (N) if SIDE = ‘L’, (M) if SIDE = ‘R’ \endverbatim

\param[out] INFO \verbatim INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value \endverbatim \author Univ. of Tennessee \author Univ. of California Berkeley \author Univ. of Colorado Denver \author NAG Ltd. \date December 2016 \ingroup doubleOTHERcomputational

Arguments

Type IntentOptional Attributes Name
character(len=1) :: SIDE
character(len=1) :: TRANS
integer :: M
integer :: N
integer :: K
double precision :: A(LDA,*)
integer :: LDA
double precision :: TAU(*)
double precision :: C(LDC,*)
integer :: LDC
double precision :: WORK(*)
integer :: INFO