\brief \b ESMF_DLARFB \htmlonly Download ESMF_DLARFB + dependencies [TGZ] [ZIP] [TXT] \endhtmlonly \par Purpose:
\verbatim
ESMF_DLARFB applies a real block reflector H or its transpose HT to a real m by n matrix C, from either the left or the right. \endverbatim \param[in] SIDE \verbatim SIDE is CHARACTER*1 = ‘L’: apply H or HT from the Left = ‘R’: apply H or H**T from the Right \endverbatim
\param[in] TRANS \verbatim TRANS is CHARACTER1 = ‘N’: apply H (No transpose) = ‘T’: apply H*T (Transpose) \endverbatim
\param[in] DIRECT \verbatim DIRECT is CHARACTER*1 Indicates how H is formed from a product of elementary reflectors = ‘F’: H = H(1) H(2) . . . H(k) (Forward) = ‘B’: H = H(k) . . . H(2) H(1) (Backward) \endverbatim
\param[in] STOREV \verbatim STOREV is CHARACTER*1 Indicates how the vectors which define the elementary reflectors are stored: = ‘C’: Columnwise = ‘R’: Rowwise \endverbatim
\param[in] M \verbatim M is INTEGER The number of rows of the matrix C. \endverbatim
\param[in] N \verbatim N is INTEGER The number of columns of the matrix C. \endverbatim
\param[in] K \verbatim K is INTEGER The order of the matrix T (= the number of elementary reflectors whose product defines the block reflector). \endverbatim
\param[in] V \verbatim V is DOUBLE PRECISION array, dimension (LDV,K) if STOREV = ‘C’ (LDV,M) if STOREV = ‘R’ and SIDE = ‘L’ (LDV,N) if STOREV = ‘R’ and SIDE = ‘R’ The matrix V. See Further Details. \endverbatim
\param[in] LDV \verbatim LDV is INTEGER The leading dimension of the array V. If STOREV = ‘C’ and SIDE = ‘L’, LDV >= max(1,M); if STOREV = ‘C’ and SIDE = ‘R’, LDV >= max(1,N); if STOREV = ‘R’, LDV >= K. \endverbatim
\param[in] T \verbatim T is DOUBLE PRECISION array, dimension (LDT,K) The triangular k by k matrix T in the representation of the block reflector. \endverbatim
\param[in] LDT \verbatim LDT is INTEGER The leading dimension of the array T. LDT >= K. \endverbatim
\param[in,out] C \verbatim C is DOUBLE PRECISION array, dimension (LDC,N) On entry, the m by n matrix C. On exit, C is overwritten by HC or HTC or CH or CH**T. \endverbatim
\param[in] LDC \verbatim LDC is INTEGER The leading dimension of the array C. LDC >= max(1,M). \endverbatim
\param[out] WORK \verbatim WORK is DOUBLE PRECISION array, dimension (LDWORK,K) \endverbatim
\param[in] LDWORK \verbatim LDWORK is INTEGER The leading dimension of the array WORK. If SIDE = ‘L’, LDWORK >= max(1,N); if SIDE = ‘R’, LDWORK >= max(1,M). \endverbatim \author Univ. of Tennessee \author Univ. of California Berkeley \author Univ. of Colorado Denver \author NAG Ltd. \date November 2011 \ingroup doubleOTHERauxiliary \par Further Details:
\verbatim
The shape of the matrix V and the storage of the vectors which define the H(i) is best illustrated by the following example with n = 5 and k = 3. The elements equal to 1 are not stored; the corresponding array elements are modified but restored on exit. The rest of the array is not used.
DIRECT = ‘F’ and STOREV = ‘C’: DIRECT = ‘F’ and STOREV = ‘R’:
V = ( 1 ) V = ( 1 v1 v1 v1 v1 )
( v1 1 ) ( 1 v2 v2 v2 )
( v1 v2 1 ) ( 1 v3 v3 )
( v1 v2 v3 )
( v1 v2 v3 )
DIRECT = ‘B’ and STOREV = ‘C’: DIRECT = ‘B’ and STOREV = ‘R’:
V = ( v1 v2 v3 ) V = ( v1 v1 1 )
( v1 v2 v3 ) ( v2 v2 v2 1 )
( 1 v2 v3 ) ( v3 v3 v3 v3 1 )
( 1 v3 )
( 1 )
\endverbatim
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
character(len=1) | :: | SIDE | ||||
character(len=1) | :: | TRANS | ||||
character(len=1) | :: | DIRECT | ||||
character(len=1) | :: | STOREV | ||||
integer | :: | M | ||||
integer | :: | N | ||||
integer | :: | K | ||||
double precision | :: | V(LDV,*) | ||||
integer | :: | LDV | ||||
double precision | :: | T(LDT,*) | ||||
integer | :: | LDT | ||||
double precision | :: | C(LDC,*) | ||||
integer | :: | LDC | ||||
double precision | :: | WORK(LDWORK,*) | ||||
integer | :: | LDWORK |