\brief \b ESMF_DLAED0 used by sstedc. Computes all eigenvalues and corresponding eigenvectors of an unreduced symmetric tridiagonal matrix using the divide and conquer method. \htmlonly Download ESMF_DLAED0 + dependencies [TGZ] [ZIP] [TXT] \endhtmlonly \par Purpose:
\verbatim
ESMF_DLAED0 computes all eigenvalues and corresponding eigenvectors of a symmetric tridiagonal matrix using the divide and conquer method. \endverbatim \param[in] ICOMPQ \verbatim ICOMPQ is INTEGER = 0: Compute eigenvalues only. = 1: Compute eigenvectors of original dense symmetric matrix also. On entry, Q contains the orthogonal matrix used to reduce the original matrix to tridiagonal form. = 2: Compute eigenvalues and eigenvectors of tridiagonal matrix. \endverbatim
\param[in] QSIZ \verbatim QSIZ is INTEGER The dimension of the orthogonal matrix used to reduce the full matrix to tridiagonal form. QSIZ >= N if ICOMPQ = 1. \endverbatim
\param[in] N \verbatim N is INTEGER The dimension of the symmetric tridiagonal matrix. N >= 0. \endverbatim
\param[in,out] D \verbatim D is DOUBLE PRECISION array, dimension (N) On entry, the main diagonal of the tridiagonal matrix. On exit, its eigenvalues. \endverbatim
\param[in] E \verbatim E is DOUBLE PRECISION array, dimension (N-1) The off-diagonal elements of the tridiagonal matrix. On exit, E has been destroyed. \endverbatim
\param[in,out] Q \verbatim Q is DOUBLE PRECISION array, dimension (LDQ, N) On entry, Q must contain an N-by-N orthogonal matrix. If ICOMPQ = 0 Q is not referenced. If ICOMPQ = 1 On entry, Q is a subset of the columns of the orthogonal matrix used to reduce the full matrix to tridiagonal form corresponding to the subset of the full matrix which is being decomposed at this time. If ICOMPQ = 2 On entry, Q will be the identity matrix. On exit, Q contains the eigenvectors of the tridiagonal matrix. \endverbatim
\param[in] LDQ \verbatim LDQ is INTEGER The leading dimension of the array Q. If eigenvectors are desired, then LDQ >= max(1,N). In any case, LDQ >= 1. \endverbatim
\param[out] QSTORE \verbatim QSTORE is DOUBLE PRECISION array, dimension (LDQS, N) Referenced only when ICOMPQ = 1. Used to store parts of the eigenvector matrix when the updating matrix multiplies take place. \endverbatim
\param[in] LDQS \verbatim LDQS is INTEGER The leading dimension of the array QSTORE. If ICOMPQ = 1, then LDQS >= max(1,N). In any case, LDQS >= 1. \endverbatim
\param[out] WORK \verbatim WORK is DOUBLE PRECISION array, If ICOMPQ = 0 or 1, the dimension of WORK must be at least 1 + 3N + 2Nlg N + 3N2 ( lg( N ) = smallest integer k such that 2^k >= N ) If ICOMPQ = 2, the dimension of WORK must be at least 4*N + N2. \endverbatim
\param[out] IWORK \verbatim IWORK is INTEGER array, If ICOMPQ = 0 or 1, the dimension of IWORK must be at least 6 + 6N + 5Nlg N. ( lg( N ) = smallest integer k such that 2^k >= N ) If ICOMPQ = 2, the dimension of IWORK must be at least 3 + 5N. \endverbatim
\param[out] INFO \verbatim INFO is INTEGER = 0: successful exit. < 0: if INFO = -i, the i-th argument had an illegal value. > 0: The algorithm failed to compute an eigenvalue while working on the submatrix lying in rows and columns INFO/(N+1) through mod(INFO,N+1). \endverbatim \author Univ. of Tennessee \author Univ. of California Berkeley \author Univ. of Colorado Denver \author NAG Ltd. \date December 2016 \ingroup auxOTHERcomputational \par Contributors:
Jeff Rutter, Computer Science Division, University of California at Berkeley, USA
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
integer | :: | ICOMPQ | ||||
integer | :: | QSIZ | ||||
integer | :: | N | ||||
double precision | :: | D(*) | ||||
double precision | :: | E(*) | ||||
double precision | :: | Q(LDQ,*) | ||||
integer | :: | LDQ | ||||
double precision | :: | QSTORE(LDQS,*) | ||||
integer | :: | LDQS | ||||
double precision | :: | WORK(*) | ||||
integer | :: | IWORK(*) | ||||
integer | :: | INFO |